Ferromagnetism in annealed ce0-95Co0-05O2 and Ce0-95Ni0-05O2 nanoparticles

Misra S., Andronenko S., Harris J., Thurber A., Beausoleil G., Punnoose A. Kazan Federal University, 420008, Kremlevskaya 18, Kazan, Russia

Abstract

This paper reports an investigation on the role of transition-metal ions in producing ferromagnetism in CeO2 nanoparticles by electron paramagnetic resonancePR). Several samples of CeO2 nanoparticles annealed at 200, 300, 400, and 500C, doped with 5% Ni and 5% Co ions, characterized by X-ray diffractionRD), X-ray photoelectron spectroscopyPS), thermogravimetry analysisGA) and mass spectroscopyS), were investigated by X-band EPR at 4, 10 and 300 K, and by magnetometry at 300 K. Magnetic properties and EPR/FMRerromagnetic Resonance) spectra of these nanoparticle samples were found to depend strongly on the annealing temperatureA), oxygen stoichiometry, and dopant-ion species. Different behavior of saturation magnetization in the samples with the dopants, Co and Ni, is found to be due to different-inward and outward-surface diffusion of these impurity ions, respectively, during annealing. A detailed simulation of EPR/FMR spectra of isolated Co and Ni ions carried out here provides in-depth details on the role of the doped ions and oxygen? defects played in the observed magnetic properties. Copyright © 2013 American Scientific Publishers All rights reserved.

http://dx.doi.org/10.1166/jnn.2013.7778

Keywords

CeO2 Nanoparticles, Ferromagnetism, Magnetic Properties., Spectroscopy