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a b s t r a c t

Morphology of aggregation intermediates, polymorphism of amyloid fibrils and aggregation kinetics of
the ‘‘Arctic’’ mutant of the Alzheimer’s amyloid b-peptide, Ab(1–40)(E22G), in a physiologically relevant
Tris buffer (pH 7.4) were thoroughly explored in comparison with the human wild type Alzheimer’s amy-
loid peptide, wt-Ab(1–40), using both in situ atomic force and electron microscopy, circular dichroism and
thioflavin T fluorescence assays. For arc-Ab(1–40) at the end of the ‘lag’-period of fibrillization an abrupt
appearance of �3 nm size ‘spherical aggregates’ with a homogeneous morphology, was identified. Then,
the aggregation proceeds with a rapid growth of amyloid fibrils with a variety of morphologies, while the
spherical aggregates eventually disappeared during in situ measurements. Arc-Ab(1–40) was also shown to
form fibrils at much lower concentrations than wt-Ab(1–40): 62.5 lM and 12.5 lM, respectively.
Moreover, at the same concentration, 50 lM, the aggregation process proceeds more rapidly for
arc-Ab(1–40): the first amyloid fibrils were observed after c.a. 72 h from the onset of incubation as com-
pared to approximately 7 days for wt-Ab(1–40). Amyloid fibrils of arc-Ab(1–40) exhibit a large variety of
polymorphs, at least five, both coiled and non-coiled distinct fibril structures were recognized by AFM,
while at least four types of arc-Ab(1–40) fibrils were identified by TEM and STEM and their mass-per-
length statistics were collected suggesting supramolecular structures with two, four and six b-sheet
laminae. Our results suggest a pathway of fibrillogenesis for full-length Alzheimer’s peptides with small
and structurally ordered transient spherical aggregates as on-pathway immediate precursors of amyloid
fibrils.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

Alzheimer’s disease (AD) is the most common age-related
dementia whose hallmark is the abundance of amyloid plaques
in the brain of AD patients. The principal constituent of these pla-
ques are fibrils mainly composed of amyloid b-peptides most com-
monly as 40 or 42 amino acid long Ab(1–40) and Ab(1–42) variants. It
is generally accepted that aggregation of Ab-monomers or oligo-
mers is involved in AD pathogenesis and there is increasing evi-
dence that specific fibrillar species and, in particular, prefibrillar
intermediates (oligomers) play a central role in the neurodegener-

ation (Selkoe, 1995; Lansbury, 1999; Dahlgren et al., 2002; Lashuel
et al., 2002; Walsh et al., 2002; Petkova et al., 2005; Lal et al., 2007;
Chimon et al., 2007; Inoue, 2008; Zheng et al., 2008; Small, 2009;
Ono et al., 2009; Ahmed et al., 2010; Jang et al., 2010b; Sandberg
et al., 2010), but as yet the precise mechanism is unknown. The
structures of Ab-monomers, dimers and oligomers have been visu-
alized with high-resolution scanning tunneling microscopy at suf-
ficient resolution to suggest the folding of the polypeptide chain
(Losic et al., 2006). Nevertheless, different fibril morphologies can
display distinguished molecular structures and neurotoxicity
(Petkova et al., 2005, 2002; Paravastu et al., 2008; Tycko et al.,
2009; Miller et al., 2010). Supramolecular models for Ab(1–40) and
Ab(1–42) have been obtained using structural constraints from STEM
mass-per-length measurements, solid-state nuclear magnetic reso-
nance spectroscopy (NMR) (Petkova et al., 2002, 2005; Paravastu
et al., 2008), as well as cryo-electron microscopy (Sachse et al.,
2008; Schmidt et al., 2009). Although some features of the fibril
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