

Contents lists available at ScienceDirect

Colloids and Surfaces A: Physicochemical and **Engineering Aspects**

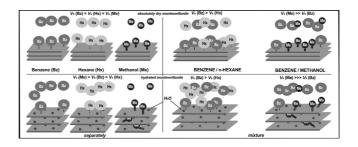
journal homepage: www.elsevier.com/locate/colsurfa

Sorption of volatile organic compounds and their mixtures on montmorillonite at different humidity

Georgiy Morozov, Vladimir Breus, Sergey Nekludov, Irina Breus*

Kazan Federal University, 18 Kremlevskaja Str., Kazan 420008, Russian Federation

HIGHLIGHTS


- · Absolutely dry mineral was nonselective towards benzene, n-hexane and methanol.
- Hydration inhibited sorption of hydrocarbons and promoted that of methanol.
- Binary mixtures even hydrocarbon mixture equal by volume were sorbed competitively.
- · Benzene in the mixture was more active than n-hexane at all humidity levels.
- Methanol was dominantly sorbed from benzene/methanol mixtures at all volume ratios.

ARTICLE INFO

Article history: Received 20 Ianuary 2014 Received in revised form 28 March 2014 Accepted 29 March 2014 Available online 12 April 2014

Keywords: Vapor-phase sorption Binary mixtures Organic compounds Montmorillonite Humidity

GRAPHICAL ABSTRACT

ABSTRACT

The vapor-phase sorption of volatile organic compounds (VOCs), i.e. n-hexane, benzene and methal along with sorption of their binary mixtures, i.e. benzene/n-hexane and benzene-methanol, on montr rilllonite with different water content was studied. The absolutely dry mineral did not exhibit selective towards the studied VOCs sorbed separately. The hydration inhibited sorption of hydrocarbons and p moted that of methanol because of intercalation of its molecules to the interlayer space of the swell mineral and dissolution in the water films on the external mineral surface. Unlike separate sorption benzene and n-hexane, sorption of their binary mixture on the montmorillonite, even equal by volume was selective. The components shared the same sorption sites with benzene being more active due its ability to form the donor-acceptor complexes with the mineral surface in addition to Van-der-Wa interactions. Opposite, in the benzene/methanol mixture the undoubted predominance of hydroph methanol over benzene was revealed, which increased with increasing humidity and was significant stronger compared to the differences in sorption of methanol and benzene sorbed separately. In the bin mixtures unequal by volume, preadsorption played an important role in VOCs competition with sorpt of aliphatic n-hexane being suppressed stronger than that of aromatic benzene. In the benzene/metha mixture, methanol was predominantly sorbed at all the studied volume ratios and hydration degree occupying its specific sorption sites. Hydration of the montmorillonite caused the reverse impact on sorption of benzene and methanol. As a result, at the full hydration state methanol sorption in the mixt reached that of the pure methanol.

© 2014 Elsevier B.V. All rights reserv

^{*} Corresponding author. Tel.: +7 8432337381. E-mail address: ibreus@ksu.ru (I. Breus).