

Contents lists available at ScienceDirect

Polyhedron

journal homepage: www.elsevier.com/locate/poly

New bifunctional *N*-thiophosphorylated thiourea and 2,5-dithiobiurea derivatives. Crystal structures of $R[C(S)NHP(S)(OiPr)_2]_2$ ($R = -N(Ph)CH_2CH_2N(Ph)$) and -NHNH)

Felix D. Sokolov^a, Damir A. Safin^{a,*}, Michael Bolte^b, Elmira R. Shakirova^a, Maria G. Babashkina^a

^a A. M. Butlerov Chemistry Institute, Kazan State University, Kremlevskaya Street 18, 420008 Kazan, Russian Federation ^b Institut für Anorganische Chemie, J.-W.-Goethe-Universität, Frankfurt/Main, Germany

ARTICLE INFO

Article history: Received 8 May 2008 Accepted 8 June 2008 Available online 4 August 2008

Keywords: N-Thiophosphoryl thiourea 2,5-Dithiobiurea Thiosemicarbazide Crystal structures

ABSTRACT

A new bifunctional N-thiophosphorylated thiourea and 2,5-dithiobiurea of the common formula $R[C(S)NHP(S)(OiPr)_2]_2$ [$R = -N(Ph)CH_2CH_2N(Ph) - (\mathbf{H_2L^2})$; $-NHNH - (\mathbf{H_2L^b})$] have been synthesized and characterized by IR, 1H , ^{31}P spectroscopy and the single crystal X-ray diffraction method. The structure of the latter compound in CDCl₃ and acetone- d_6 solutions has been discussed in comparison with the monofunctional thiosemicarbazide PhNHNHC(S)NHP(S)(OiPr)₂ ($\mathbf{HL^c}$).

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Metal–organic architectures formed by d-metal cations and polyfunctional chelators, *e.g.* bis-β-diketonates and bis-N-acy-lthioureas, are of great interest due to their magnetic, gas storage and catalytic properties [1–6]. The propensity of ligands containing the fragment [R_2 NC(S)NHC(O)] $_2$ Z to form cis-square-planar complexes with Ni(II), Pd(II) and Pt(II) has been used for the synthesis of metal-containing macrocycles [1–6]. Depending on the nature of the spacer, the formation of dimer M_2L_2 (Z = m- C_6H_4) or trimer M_3L_3 (Z = o- C_6H_4) coordination compounds [M(II) = Ni(II), Pd(II), Pt(II)] have been observed.

The phosphorus containing analogues of these compounds have more flexible chelate units that provide interesting perspectives of new metal-containing macrocycle creations. A number of polyfunctional thiourea ligands, H_2L , containing several $[R'_2P(S)NHC-(S)NH]_2Z$ groups [7–10] and their complexes with d-metal cations have been synthesized in our scientific group (Scheme 1).

Herein, we report the structure and complexing properties of a bis-thiourea based on the N,N'-diphenyl-1,2-diaminoethane moiety $(\mathbf{H_2L^a})$ and the new 1,6-bis-thiophosphorylated 2,5-dithiobiurea $(\mathbf{H_2L^b})$ (Scheme 2). The structure of the latter compound in CDCl₃ and acetone- d_6 solutions have been discussed in comparison with the monofunctional thiosemicarbazide $(\mathbf{HL^c})$ (Scheme 2).

2. Experimental

2.1. Synthesis

A solution of N,N'-diphenyl-1,2-diaminoethylene, hydrazine hydrate or phenylhydrazine (5 mmol; 1.06, 0.25 or 0.54 g, respectively) in anhydrous CH_2Cl_2 (15 mL) was treated under vigorous stirring with a solution of $(iPrO)_2P(S)NCS$ (11 mmol, 2.63 g; for 5.5 mmol, 1.31) in the same solvent. The mixture was stirred for 2 h. The solvent was removed in a vacuum, and the product was purified by recrystallization from a 1:5 (v/v) mixture of methylene chloride and n-hexane.

H₂L^a: Yield: 3.24 g (94%). M.p. 88 °C. ¹H NMR (CDCl₃): δ = 1.22 (d, ${}^{3}J_{\text{H,H}}$ = 6.2 Hz, 12H, CH₃), 1.27 (d, ${}^{3}J_{\text{H,H}}$ = 6.2 Hz, 12H, CH₃), 4.49 (s, 4H, CH₂), 4.83 (d, sept, ${}^{3}J_{\text{POCH}}$ = 10.6 Hz, ${}^{3}J_{\text{H,H}}$ = 6.2 Hz, 4H, OCH), 6.24 (br. d, ${}^{2}J_{\text{PNH}}$ = 10.0 Hz, 2H, NH), 7.14–7.17 (m, 4H, o-Ph), 7.37–7.51 (m, 6H, m-Ph + p-Ph) ppm. ³¹P NMR (CDCl₃): δ = 58.8 (q, ${}^{3}J_{\text{POCH}} \approx {}^{2}J_{\text{PNH}} \approx$ 10 Hz) ppm. IR: ν = 627 (P=S), 983, 1004 (POC), 1537 (S=C-N), 3354 (NH) cm⁻¹. Calc. for C₂₈H₄₄N₄-O₄P₂S₄ (690.88): C, 48.68; H, 6.42; N, 8.11. Found: C, 48.79; H, 6.38; N, 8.15%.

H₂L^b: Yield: 1.81 g (71%). M.p. 118 °C. ¹H NMR (CDCl₃): δ = 1.32–1.41 (m, CH₃), 4.77 (d, sept overlapped with the main signal at 4.82 ppm, ${}^{3}J_{\rm POCH}$ = 9.9 Hz, ${}^{3}J_{\rm H,H}$ = 6.2 Hz, OCH, minor form), 4.82 (d, sept, ${}^{3}J_{\rm POCH}$ = 10.4 Hz, ${}^{3}J_{\rm H,H}$ = 6.0 Hz, OCH, major form), 5.09, 5.18 (NH, minor form), 7.02 (d, ${}^{2}J_{\rm PNH}$ = 13.0 Hz, PNH, major form), 11.05 (s, PNH, major form) ppm. ¹H NMR (acetone-*d*₆): δ = 1.33–1.39 (m, CH₃), 4.80–4.95 (m, OCH), 8.60 (d, ${}^{2}J_{\rm PNH}$ = 14.2 Hz,

^{*} Corresponding author. Tel.: +7 843 231 53 97; fax: +7 843 254 37 34. E-mail address: damir.safin@ksu.ru (D.A. Safin).