

Available online at www.sciencedirect.com

Polyhedron 25 (2006) 1433-1440

Crystal structure and dynamic behavior of [Ni{PhNHC(S)NP(S)(OPr^{*i*})₂-*S*,*S*}₂] complex in dichloromethane solution

Vasiliy V. Brusko^{a,*}, Aydar I. Rakhmatullin^a, Valery G. Shtyrlin^a, Dmitry B. Krivolapov^b, Igor A. Litvinov^b, Nail G. Zabirov^a

^a Department of Chemistry, Kazan State University, Kremlevskaya 18, Kazan 420008, Russia ^b Arbuzov Institute of Organic and Physical Chemistry, Arbuzov 8, Kazan 420083, Russia

> Received 20 June 2005; accepted 2 October 2005 Available online 4 November 2005

Abstract

The crystal structure of the complex [Ni{PhNHC(S)NP(S)(OPr['])₂-S,S}₂] has been determined and its behavior in dichloromethane solution investigated by NMR ³¹P spectroscopy. The X-ray structural analysis shows the nickel atom at the symmetry center in a distorted square-planar arrangement with *trans*-disposition of the ligands. The six-membered cycle NiS(1)PNCS(2) has the form of the asymmetric boat. In dichloromethane solutions of the compound four signals have been detected by ³¹P–{¹H} NMR method. These signals are related to three diamagnetic square-planar isomers with different dispositions and conformations of two ligands in antiorientation: *trans*-chair–boat (A), *cis*-boat–boat (B), and *trans*-boat–boat (C). These isomers are in slow exchange equilibria. It was shown that all these forms are in rather fast chemical exchange with minor (unobserved) paramagnetic pseudo-tetrahedral isomers (A_T, B_T, and C_T). The thermodynamic constants of equilibria between A, B, and C as well as rate constants and activation parameters for conversion of three square-planar to respective pseudo-tetrahedral forms were calculated from the ³¹P–{¹H} NMR data. © 2005 Elsevier Ltd. All rights reserved.

Keywords: Nickel; Chelates; S ligands; Isomers; Thermodynamic; Chemical exchange

1. Introduction

There is continuing interest in Ni(II) complexes with thiophosphorus ligands containing a NiS₄ core [1,2], partly due to the unusual metal coordination and varying stereochemistry of the chelate cycles. Nickel(II) complexes type I {of dithiophosphoric acids [(RO)₂PS₂]₂Ni (R = Me [3], Et [4]) [2] and dithiophosphinic acids (R₂PS₂)₂Ni (R = Me [5], Et [6], Ph [7])} and type II {of bis(thiophosphinoyl)amines [Ni{N(PR₂S)₂-*S*,*S*}₂] (R = Me **1** [8], Pr^{*i*} **2** [9], Ph **3** [2,10]) and [Ni{Me₂P(S)NP(S)Ph₂-*S*,*S*}₂] **4** [2]} have been investigated with X-ray diffractometry. Nickel atom has the slightly

* Corresponding author. Tel.: +78432315310.

E-mail address: vasiliy.brusko@ksu.ru (V.V. Brusko).

distorted square-planar configuration in all complexes of type I as well as in complexes with dithioacetylacetone [11] and with 1,1-diethyl-3-thiobenzoyl-thiourea [12]. In complexes of type II, the NiS₄ core has tetrahedral configuration in the compounds 1–3 but is square-planar one in the compounds 4 and $3 \cdot 2$ THF [13]. As pointed out by the authors [2,13] the reasons for this difference are not clear. The complex 3 has been found to show square-planar – tetrahedral isomerization also [13,14]. It is possible that this equilibrium is affected by temperature, solvent, and the structure of ligands [13,15]. The solution of these problems is mainly restricted by the limited set of relevant complexes. Except the compounds mentioned, only complexes [Ni{N(PPh_2Se)_2-Se,Se}_2] [16] and [Ni{CH(PPh_2S)_2-S.S}_2] [17] have been described (see Scheme 1).

^{0277-5387/}\$ - see front matter © 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.poly.2005.10.001