Concerning the theory of τ -measurable operators affiliated to a semifinite von Neumann algebra

Bikchentaev A.

Kazan Federal University, 420008, Kremlevskaya 18, Kazan, Russia

Abstract

© 2015, Pleiades Publishing, Ltd. Let M be a von Neumann algebra of operators in a Hilbert space H, let τ be an exact normal semifinite trace on M, and let L1(M, τ) be the Banach space of τ -integrable operators. The following results are obtained. If $X = X^*$, $Y = Y^*$ are τ -measurable operators and $XY \in L1(M, \tau)$, then $YX \in L1(M, \tau)$ and $\tau(XY) = \tau(YX) \in R$. In particular, if $X, Y \in B(H)$ sa and $XY \in G1$, then $YX \in G1$ and $tr(XY) = tr(YX) \in R$. If $X \in L1(M, \tau)$, then (Formula Presented.). Let A be a τ -measurable operator. If the operator A is τ -compact and $V \in M$ is a contraction, then it follows from $V^*AV = A$ that VA = AV. We have A = A2 if and only if $A = A^*|A|$. This representation is also new for bounded idempotents in H. If $A = A2 \in L1(M, \tau)$, then (Formula Presented.). If A = A2 and A (or A^*) is semihyponormal, then A is normal, thus A is a projection. If A = A3 and A is hyponormal or cohyponormal, then A is normal, and thus $A = A^* \in M$ is the difference of two mutually orthogonal projections A = A2. If A = A3, then A = A3 then A =

http://dx.doi.org/10.1134/S0001434615090035

Keywords

Banach space of τ -integrable operators, cohyponormal operator, Hilbert space, hyponormal operator, idempotent, semihyponormal operator, von Neumann algebra, τ -compact operator, τ -measurable operator