Journal of Atmospheric and Solar-Terrestrial Physics 64 (2002) 1865-1896 Journal of ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS www.elsevier.com/locate/jastp ## Global-scale tidal variability during the PSMOS campaign of June–August 1999: interaction with planetary waves D. Pancheva^{a,*}, E. Merzlyakov^b, N.J. Mitchell^a, Yu. Portnyagin^b, A.H. Manson^c, Ch. Jacobi^d, C.E. Meek^c, Y. Luo^c, R.R. Clark^e, W.K. Hocking^f, J. MacDougall^f, H.G. Muller^g, D. Kürschner^h, G.O.L. Jonesⁱ, R.A. Vincent^j, I.M. Reid^j, W. Singer^k, K. Igarashi^l, G.I. Fraser^m, A.N. Fahrutdinovaⁿ, A.M. Stepanovⁿ, L.M.G. Poole^o, S.B. Malinga^o, B.L. Kashcheyev^p, A.N. Oleynikov^p ^aDepartment of Physics, University of Wales, Penglalsm, Aberystwyth, Dyfed SY23 3BZ, UK ^bInstitute for Experimental Meteorology, Obninsk, Russia ^cInstitute of Space and Atmospheric Studies, University of Saskatchewan, Saskatoon, Canada d Institute for Meteorology, University of Leipzig, Leipzig, Germany ^eUniversity of New Hampshire, Durham, USA f University of Western Ontario, London, Canada g University of Cranfield, Royal Military College of Science, Shrivenham, Swindon, UK ^hInstitute for Geophysics and Geology, University of Leipzig, Collm Observatory, Germany ⁱBritish Antarctic Survey, NERC, Cambridge, UK ^jUniversity of Adelaide, Adelaide, Australia ^k Albinos-Institute of Atmospheric Physics, Kühlungsborn, Germany ¹Communications Research Laboratory, Koganei, Tokyo, Japan ^m University of Canterbury, Christchurch, New Zealand ⁿKazan State University, Kazan, Russia ^oRhodes University, Grahamstown, South Africa PKharkov State Technical University of Radioelectronics, Kharkov, Ukraine Received 9 May 2001; received in revised form 8 April 2002; accepted 28 June 2002 ## Abstract During the PSMOS *Global-scale tidal variability* experiment campaign of June 1–August 31, 1999, a network of radars made measurements of winds, waves and tides in the mesosphere/lower-thermosphere region over a wide range of latitudes. Clear evidence was found that fluctuations in tidal amplitudes occur on a global scale in both hemispheres, and that at least some of these fluctuations are periodic in nature. Modulation of the amplitude of the 12 h tide was particularly evident at periods of 10 and 16 days, suggesting a non-linear interaction with planetary waves of those periods to be responsible. In selected cases, the secondary waves predicted from non-linear theory could be identified and their zonal wave numbers determined. In some, but not all, cases the longitudinal structure of the secondary waves supports the theory of planetary-wave/tidal interaction being responsible for the observed tidal modulation. It was noted also that beating between a 12.4-lunar and the solar tide could produce a near 16-day modulation of the 12 h tide amplitude that is frequently observed in late summer. © 2002 Elsevier Science Ltd. All rights reserved. Keywords: MLT region dynamics; Tidal variability; Non-linear interactions; Lunar tide E-mail address: ddp@aber.ac.uk (D. Pancheva). 1364-6826/02/\$ - see front matter © 2002 Elsevier Science Ltd. All rights reserved. PII: S1364-6826(02)00199-2 ^{*} Corresponding author. Tel.: +44-1970-621902; fax +44-1970-622826.