Formation of Balmer lines in the spectra of X-ray Novae

Sakhibullin N., Suleimanov V., Shimanskii V., Suleimanova S. Kazan Federal University, 420008, Kremlevskaya 18, Kazan, Russia

Abstract

The profiles and equivalent widths of the absorption and emission components of Balmer lines and the continuum optical spectra of X-ray novae during outbursts are calculated. A stationary self-illuminated accretion a disk around a Schwarzschild black hole is used as an instantaneous model for the X-ray nova. Each annulus of the disk is assumed to emit as a stellar atmosphere that is illuminated by the same X-ray flux. The irradiated stellar model atmospheres are calculated in the LTE approximation. The equivalent widths of the emission components of the Balmer lines are shown to depend on the X-ray flux that is intercepted by the disk (i.e., on the geometric sizes of the disk), on the optical depth of the chromospheric-like layer along the line of sight (i.e., on the inclination of the disk to the line of sight), and on the relative fraction of the soft component with E ~ 0.1 keV in the X-ray spectrum (because it is this component that heats the upper atmosphere of the disk). A comparison of the theoretical spectra with the observed spectra of the X-ray nova V518 Per (GRO J0422+32) reveals an additional emission in the observed spectrum, which is most probably the bremsstrahlung of an optically thin, hot (T ~ 106 K) shell.