

Journal of Crystal Growth 196 (1999) 313-318

Crystal growth and preliminary X-ray study of glutamic acid specific serine protease from *Bacillus intermedius*

I.P. Kuranova^a,*, E.V. Blagova^a, V.M. Levdikov^a, G.N. Rudenskaya^b, N.P. Balaban^c, E.V. Shakirov^c

a Institute of Crystallography, Russian Academy of Science, Leninski pr. 59, Moscow 117333, Russia
b Department of Chemistry, Moscow State University, Moscow, Russia
c Department of Microbiology, Kazan State University, Kazan, Russia

Abstract

The glutamic acid specific protease (glutamyl-endopeptidase) from *Bacillus intermedius*, strain 3-19, was isolated and purified using ion exchange chromatography on CM-cellulose and Mono-S FPLC column. The conditions for crystallization of the enzyme have been discussed. The crystals of enzyme were grown using hanging-drop vapor-diffusion technique. Crystals belong to the space group C2 with unit cell parameters of a = 61.62 Å, b = 55.84 Å, c = 60.40 Å, $\beta = 117.6^{\circ}$ X-ray diffraction data to 1.68 Å resolution were collected using synchrotron radiation (EMBL, Hamburg) and an imaging plate scanner. © 1999 Elsevier Science B.V. All rights reserved.

Keywords: Protease; Glutamyl-endopeptidase; Crystallization; X-ray study

1. Introduction

The pancreatic-type serine proteases have been classified into four main groups on the basis of their specificity. Trypsin-like proteases cleave polypeptide chains after positively charged residues, the chymotrypsin-like ones cleave after large hydrophobic residues, and elastase-like after small hydro-

0022-0248/99/\$ – see front matter \odot 1999 Elsevier Science B.V. All rights reserved. PII: S 0 0 2 2 - 0 2 4 8 (9 8) 0 0 8 7 4 - 4

phobic residues. More recently a group of acidic-amino-acid-specific (Glu, Asp-specific) proteases have been characterized. These endopeptidases, isolated at first from *Staphylococcus* and then from *Actinomycetes*, *Streptomycetes* and *Bacilli*, cleave peptide bonds on the carboxyl side of either glutamic or aspartic acid [1–6]. Some of these enzymes, for instance, epidermolytic toxins A and B and interleukin-1β converting enzyme, have important biological roles being implicated in several disease states and in viral processing [7–9]. Due to their specificity Glu, Asp-endopeptidases are used very extensively for fragmentation of proteins prior to amino acid sequencing, for enzymatic synthesis

^{*}Corresponding author. Fax: +7~095~135~10~11; e-mail: inna@ns.crys.ras.ru.