
Journal of Healthcare Engineering 2017 vol.2017

Combination of Deep Recurrent Neural Networks and
Conditional Random Fields for Extracting Adverse Drug
Reactions from User Reviews
Tutubalina E., Nikolenko S.
Kazan Federal University, 420008, Kremlevskaya 18, Kazan, Russia

Abstract

© 2017 Elena Tutubalina and Sergey Nikolenko. Adverse drug reactions (ADRs) are an essential
part of the analysis of drug use, measuring drug use benefits, and making policy decisions.
Traditional channels for identifying ADRs are reliable but very slow and only produce a small
amount of data. Text reviews, either on specialized web sites or in general-purpose social
networks, may lead to a data source of unprecedented size, but identifying ADRs in free-form
text is a challenging natural language processing problem. In this work, we propose a novel
model for this problem, uniting recurrent neural architectures and conditional random fields. We
evaluate our model with a comprehensive experimental study, showing improvements over
state-of-the-art methods of ADR extraction.
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