Eigenvibrations of a Beam with Load

A. A. Samsonov* and S. I. Solov'ev**
(Submitted by A. V. Lapin)
${ }^{1}$ Department of Computational Mathematics, Institute of Computational Mathematics and Information Technologies, Kazan (Volga Region) Federal University, Kazan, 420008 Russia
Received September 27, 2016

Abstract

The eigenvalue problem describing eigenvibrations of a beam with load is investigated. The problem has an increasing sequence of positive simple eigenvalues with limit point at infinity. To the sequence of eigenvalues, there corresponds a system of normalized eigenfunctions. Limit properties of eigenvalues and eigenfunctions are studied.

DOI: 10.1134/S1995080217050298
Keywords and phrases: Eigenvalue, eigenfunction, eigenvalue problem, beam, eigenvibration.

1. INTRODUCTION

Let us formulate the differential eigenvalue problem governing eigenvibrations of the beam-load system. Assume that the beam axis occupies in the equilibrium horizontal position the segment $[0, l]$ on the $O x$ axis. Denote by $\rho(x)$ the volume mass density, $E(x)$ the elasticity Young modulus, $S(x)$ the square of transversal cut of the beam, $J(x)$ the inertia moment of the cut with respect to its horizontal axis at the point $x \in[0, l]$. Suppose that the end $x=0$ of the beam is rigidly fixed while the end $x=l$ is free, at the point $x=l$ of the beam a load of mass M is rigidly joined. Then the vertical deflection $w(x, t)$ of the beam at a point x at time t satisfies the following equations

$$
\begin{gather*}
\frac{\partial^{2}}{\partial x^{2}}\left(p(x) \frac{\partial^{2}}{\partial x^{2}} w(x, t)\right)+r(x) \frac{\partial^{2}}{\partial t^{2}} w(x, t)=0, \quad x \in(0, l), \quad t>0 \tag{1}\\
w(0, t)=\frac{\partial}{\partial x} w(0, t)=0, \quad t>0 \tag{2}\\
\frac{\partial^{2}}{\partial x^{2}} w(l, t)=\frac{\partial}{\partial x}\left(p(l) \frac{\partial^{2}}{\partial x^{2}} w(l, t)\right)-M \frac{\partial^{2}}{\partial t^{2}} w(l, t)=0, \quad t>0 \tag{3}
\end{gather*}
$$

where $p(x)=E(x) J(x), r(x)=\rho(x) S(x), x \in[0, l]$.
The eigenvibrations of the beam-load system are characterized by the function $w(x, t)$ of the form $w(x, t)=u(x) v(t), x \in[0, l]$, where $v(t)=a_{0} \cos \sqrt{\lambda} t+b_{0} \sin \sqrt{\lambda} t, t>0 ; a_{0}, b_{0}$, and λ are constants. Then equations (1)-(3) lead to the following eigenvalue problem: find values λ and nontrivial functions $u(x), x \in[0, l]$, such that

$$
\begin{equation*}
\left(p(x) u^{\prime \prime}(x)\right)^{\prime \prime}=\lambda r(x) u(x), \quad x \in(0, l), u(0)=u^{\prime}(0)=0, \quad u^{\prime \prime}(l)=\left(p(l) u^{\prime \prime}(l)\right)^{\prime}+\lambda M u(l)=0 \tag{4}
\end{equation*}
$$

Problem (4) has an increasing sequence of positive simple eigenvalues with limit point at infinity. To the sequence of eigenvalues, there corresponds a system of normalized eigenfunctions. In the present

[^0]
[^0]: *E-mail: anton.samsonov.kpfu@mail.ru
 ** E-mail: sergei.solovyev@kpfu.ru

