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Eigenvibrations of a Beam with Load
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Abstract—The eigenvalue problem describing eigenvibrations of a beam with load is investigated.
The problem has an increasing sequence of positive simple eigenvalues with limit point at infinity.
To the sequence of eigenvalues, there corresponds a system of normalized eigenfunctions. Limit
properties of eigenvalues and eigenfunctions are studied.
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1. INTRODUCTION

Let us formulate the differential eigenvalue problem governing eigenvibrations of the beam-load
system. Assume that the beam axis occupies in the equilibrium horizontal position the segment [0, l]
on the Ox axis. Denote by ρ(x) the volume mass density, E(x) the elasticity Young modulus, S(x) the
square of transversal cut of the beam, J(x) the inertia moment of the cut with respect to its horizontal
axis at the point x ∈ [0, l]. Suppose that the end x = 0 of the beam is rigidly fixed while the end x = l is
free, at the point x = l of the beam a load of mass M is rigidly joined. Then the vertical deflection w(x, t)
of the beam at a point x at time t satisfies the following equations
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where p(x) = E(x)J(x), r(x) = ρ(x)S(x), x ∈ [0, l].
The eigenvibrations of the beam-load system are characterized by the function w(x, t) of the form

w(x, t) = u(x)v(t), x ∈ [0, l], where v(t) = a0cos
√
λt+ b0sin

√
λt, t > 0; a0, b0, and λ are constants.

Then equations (1)–(3) lead to the following eigenvalue problem: find values λ and nontrivial functions
u(x), x ∈ [0, l], such that

(p(x)u′′(x))′′ = λr(x)u(x), x ∈ (0, l), u(0) = u′(0) = 0, u′′(l) = (p(l)u′′(l))′ + λMu(l) = 0. (4)

Problem (4) has an increasing sequence of positive simple eigenvalues with limit point at infinity. To
the sequence of eigenvalues, there corresponds a system of normalized eigenfunctions. In the present
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