

Contents lists available at ScienceDirect

Journal of Photochemistry and Photobiology A: Chemistry

journal homepage: www.elsevier.com/locate/jphotochem

Transformation of 6-tetrahydrobiopterin in aqueous solutions under UV-irradiation

Taisiya A. Telegina^{a,b,*}, Tamara A. Lyudnikova^a, Andrey A. Buglak^c, Yulia L. Vechtomova^{a,b}, Mikhail V. Biryukov^d, Vladimir V. Demin^e, Mikhail S. Kritsky^a

- a Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33 bld. 2 Leninsky Prospekt, Moscow 119071, Russia
- ^b Kazan Federal University, 18, Kremlevskaja str., Kazan 420008, Russia
- ^c St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
- ^d Faculty of Biology, Lomonosov Moscow State University, Moscow 119992, Russia
- ^e Faculty of Soil Science, Lomonosov Moscow State University, Moscow 119992, Russia

ARTICLE INFO

Article history: Received 7 April 2017 Received in revised form 21 July 2017 Accepted 24 July 2017 Available online 25 July 2017

Keywords:
Tetrahydrobiopterin
Ultraviolet irradiation
Autoxidation of tetrahydrobiopterin
Photooxidation of tetrahydrobiopterin
Azacyclobutane dimer
Vitiligo phototherapy

$A\ B\ S\ T\ R\ A\ C\ T$

Melanogenesis disturbance leads to several pathologies, including vitiligo disease. Ultraviolet (UV) narrowband phototherapy (308 or 311 nm) is used in treating vitiligo; however, the mechanism of phototherapy is not yet understood. Vitiligo is accompanied by three-fivefold increased de-novo synthesis of (6R)-L-erythro-5,6,7,8-tetrahydrobiopterin (H₄Bip), its excess and its further oxidation can be considered as significant factors in the pathogenesis of vitiligo. (H₄Bip), as the phenylalanine 4hydroxylase coenzyme, catalyzes the oxidation of phenylalanine to tyrosine (a melanin precursor). In this context, photo-transformation of H_4Bip in aqueous buffer solutions has been studied. HPLC-MS/MS has demonstrated that pterin products of H_4Bip autoxidation (7,8-dihydropterin (H_2Ptr), dihydroxanthopterin and pterin) predominate over biopterin products (7,8-dihydrobiopterin (H₂Bip) and biopterin). We have shown that UV irradiation accelerates the autoxidation while the products of oxidative degradation of H₄Bip act as photosensitizers. The distinctive feature of photooxidation of H₄Bip from autoxidation is the formation of dihydropterin $(H_2Ptr)_2$ and dihydrobiopterin $(H_2Bip)_2$ dimers. By means of HPLC-MS/ MS it was found that formation of dihydropterin dimers is the predominant process. The signal of molecular ion of the dimer $(H_2Ptr)_2$ (m/z=331) was almost a thousand times higher than the signal of $(H_2Bip)_2$ (m/z=479). The key point of the dimerization is photoexcitation (at 310-320 nm) of the intermolecular complex (qH₂Ptr-H₂Ptr) generated in dark. As a result of the photoreaction azacyclobutane dimers have been formed. In the case of alternation of dark and light intervals H₄Bip converted into dimers with 96 % yield. The data obtained are discussed in the context of UV-B narrowband vitiligo phototherapy.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin (H_4Bip) is a coenzyme for the series of enzymes: NO synthases, alkylglycerol monooxygenases and aromatic amino acid hydroxylases. H_4Bip is the coenzyme of phenylalanine hydroxylase (EC 1.14.16.1) catalyzing the oxidation of phenylalanine to tyrosine by molecular oxygen in the process of melanogenesis [1]. Melanogenesis disturbance leads is a characteristic feature of certain dermatological

E-mail address: telegina@inbi.ras.ru (T.A. Telegina).

pathologies, including vitiligo disease, which results in the emergence of depigmented skin patches. The patients with vitiligo appeared to have three-fivefold increased *de-novo* synthesis of H₄Bip; its excess and its further oxidation can be considered as important factors in the pathogenesis of vitiligo [2–6]. Pterin and its reduced forms absorb light in the ultraviolet spectral region. Recently, tetrahydrocyanopterin has been described as a chromophore within a photoreceptor of several cyanobacteria [7,8]. The role that pterins perform as photoreceptors and as photosensitizers of metabolic reactions is not well understood. It is obvious, however, that these issues are vitally important for photobiology [9] and photomedicine. Apart from our recent work [10], the photochemistry of H₄Bip coenzyme has never been studied. We have demonstrated that biopterin, which has been formed in H₄Bip solution as a result of the dark oxidation, acts as the

^{*} Corresponding author at: Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33 bld. 2 Leninsky Prospekt, Moscow 119071. Russia.