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BOOLEAN ALGEBRAS REALIZED BY C.E. EQUIVALENCE
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Abstract. Let E be a computably enumerable (c.e.) equivalence relation
on the set of natural numbers ω. We consider countable structures where
basic functions are computable and respect E. If the corresponding quotient
structure is a Boolean algebra B, then we say that the c.e. relation
E realizes B. In this paper we study connections between algorithmic
properties of E and algebraic properties of Boolean algebras realized by
E. Also we compare these connections with the corresponding results for
linear orders and groups realized by c.e. equivalence relations.
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1. Introduction

Computably enumerable (c.e.) structures are usually given by the domain ω,
computable functions representing the basic functions in the structure, plus some
computably enumerable predicates (among which there is a predicate E representing
the equality relation). When a relation E is fixed, the c.e. structures in which the
equality relation coincides with E depend heavily on the nature of E. For example,
Novikov [1] constructed a finitely generated group with undecidable word problem;
in other words, there is a group which can be represented using a non-computable
c.e. equivalence relation E, however, it cannot be represented by using a computable
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equivalence relation. On the other hand, when dealing with Noetherian rings [2],
Baur [3] showed that every c.e. Noetherian ring is already a computable Noetherian
ring, as the underlying equality E is a computable relation. Thus, only computable
equality relations E can be used to represent computable Noetherian rings.

In this paper we are interested in Boolean algebras, their c.e. representations,
and dependency of these representations on the underlying domains. We aim to find
structural properties of Boolean algebras emphasizing the role of a c.e. equivalence
relation E representing the equality. Our focus on Boolean algebras is motivated
by the results in [4],[5].

2. Preliminaries

For a set X, card(X) is the cardinality of X. We treat Boolean algebras as
structures in the language LBA = {∨2,∧2, C1, 0, 1}. Recall that x△y = (x∧C(y))∨
(y ∧ C(x)). If L is a linear order, then Int(L) denotes the corresponding interval
algebra. The reader is referred to [6] for further background on countable Boolean
algebras.

We consider only equivalence relations with domain ω. If E is an equivalence
relation and a ∈ ω, then [a]E is the E-equivalence class of a. For equivalence
relations E and F , the direct sum (E ⊕ F ) is an equivalence relation such that for
any x ∈ ω, we have

[2x]E⊕F = {2y : y ∈ [x]E}, and [2x+ 1]E⊕F = {2y + 1 : y ∈ [x]F }.

We say that E is computably reducible to F (denoted by E ≤c F ) if there is a
computable function f(x) such that for any x and y, (xEy) iff (f(x)Ff(y)). The
systematic study of computable reducibility was initiated by Ershov [7]. For further
information on computable reducibility, we refer the reader to [8, 9, 10].

For a non-zero natural number n, the equivalence relation Idn is defined as
follows: (xIdny) iff (x mod n) = (y mod n). By idω we denote the identity relation
on ω. Suppose that X1, . . . , Xn are pairwise disjoint subsets of ω. Let

E(X1, . . . , Xn) := {(x, y) : (x = y) or (x, y ∈ Xi) for some i ≤ n}.

Notice the following: If X1, . . . , Xn are c.e. sets, then E(X1, . . . , Xn) is a c.e.
equivalence relation.

Assume that E is a c.e. equivalence relation on ω. A computable function f : ωn →
ω respects E if for all x1, y1, . . . , xn, yn ∈ ω such that (x1, y1), . . . , (xn, yn) ∈ E, we
have (f(x1, . . . , xn), f(y1, . . . , yn)) ∈ E. If an n-ary function f respects E, then f
induces an operation on the quotient set ω/E. Following [11], we slightly abuse the
notation and denote the induced map by f itself.

The next three definitions follow the lines of [4, 5, 11].

Definition 1. Consider a structure of the form (ω,∨,∧, C, 0, 1), where 0, 1 are
elements and ∨,∧, C are computable functions respecting E. If the induced structure
S = (ω/E,∨,∧, C, 0, 1) is a Boolean algebra, then S is called an E-Boolean algebra.
For a countable Boolean algebra B, we say that E realizes B if there is an E-Boolean
algebra isomorphic to B.

Definition 2. For a c.e. equivalence relation E, we define the class

KBA(E) = {B : B is a Boolean algebra realized by E} .
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Assume that E1 and E2 are c.e. equivalence relations. We say that E1 is BA-
reducible to E2 (denoted by E1 ≤BA E2) if KBA(E1) ⊆ KBA(E2).

Definition 3. A countable Boolean algebra B is computably enumerable ( c.e.) if
there is a c.e. equivalence relation E such that E realizes B.

By PBA we denote the partial order of BA-degrees. For a c.e. equivalence relation
E, degBA(E) denotes the BA-degree of E.

We mention two antecendents of our work on Boolean algebras. Feiner [12] built
the first example of a c.e. Boolean algebra that does not have a computable copy.
Odintsov and Selivanov [13] studied countable Boolean algebras realized by Σ0

n

equivalence relations.

3. Minimal and maximal BA-degrees

Note that for a non-zero natural number n, Int(n) is a finite Boolean algebra
with exactly n atoms. It is not difficult to prove the following:

Proposition 1. (1) For n ∈ ω, we have KBA(Id2n) = {Int(n)}.
(2) If k ∈ ω is not a power of two, then KBA(Idk) = ∅.

Corollary 1. The partial order PBA has the least degree degBA(Id3).

A c.e. structure A is computably categorical if for any c.e. structure B isomorphic
to A, there is a computable function f : ω → ω such that f induces an isomorphism
from A onto B.

Lemma 1. Let E be a c.e. equivalence relation. If KBA(E) contains a computably
categorical structure, then degBA(E) is maximal in PBA.

Proof. The proof is essentially the same as in [4, Lemma 25].

Corollary 2. For any n ∈ ω, the degree degBA(Id2n) is maximal in PBA. Hence,
PBA has infinitely many maximal degrees.

4. m-Degrees of equivalence classes

Assume that B = (ω/E,∨,∧, C, 0, 1) is a c.e. Boolean algebra. First, we prove a
simple useful lemma.

Lemma 2. The following sets are m-equivalent:
(1) the equivalence relation E;
(2) the class [a]E for any fixed a ∈ ω;
(3) the set P = {(b, c) : [b]E ≤B [c]E}.

Proof. We prove the following reductions:
(i) E ≤m [a]E ≤m E, and
(ii) [a]E ≤m P ≤m E.

(i) For x, y ∈ ω, it is easy to see that xEy iff x△y ∈ [0]E . In turn, this is equivalent
to (x△y)△a ∈ [a]E . Since for any fixed a, the function g(x, y) = (x△y)△a is
computable, we obtain that E ≤m [a]E . It is obvious that [a]E ≤m E.

(ii) Note that the condition x ∈ [a]E is equivalent to [x△a]E ≤B [0]E . Hence,
we have [a]E ≤m P . Recall that [x]E ≤B [y]E iff x ∨ y ∈ [y]E . This implies that
P ≤m E.



BOOLEAN ALGEBRAS REALIZED BY C.E. EQUIVALENCE RELATIONS 851

Corollary 3. Suppose that E is a c.e. equivalence relation.

(1) If there is an element a ∈ ω such that [a]E ̸≡m E, then KBA(E) = ∅.
(2) If there is b ∈ ω such that the class [b]E is a simple set, then KBA(E) = ∅.

Proof. The first claim is a direct consequence of Lemma 2. Now assume that the
relation E realizes a Boolean algebra B and a class [b]E is a simple set. It is easy to
see that the algebra B is nontrivial. Choose c ∈ ω with c ̸∈ [b]E . Since [c]E ≡m [b]E ,
the class [c]E is an infinite c.e. subset of (ω \ [b]E); this is a contradiction.

Note that, in general, the condition

(∀a ∈ ω)([a]E ≡m E)

does not imply that KBA(E) is not empty. In particular, if E has exactly three
equivalence classes, then they are all computable, but there is no Boolean algebra
realized by E.

Proposition 2. Assume that E is a c.e. equivalence relation, and there is an
element a ∈ ω such that the class [a]E is computable. Then E satisfies exactly one
of the following conditions:

(1) KBA(E) = ∅;
(2) KBA(E) = {Int(n)} for some n ∈ ω;
(3) KBA(E) is the class of all infinite Boolean algebras possessing computable

copies.

Proof. Without loss of generality, we may assume that E has infinitely many
equivalence classes and KBA(E) ̸= ∅. Then, by Lemma 2, the relation E is comput-
able. Therefore, it is not hard to show that the class KBA(E) consists of all infinite
Boolean algebras with computable copies.

Corollary 4. Assume that X1, X2, . . . , Xn are pairwise disjoint c.e. sets such that
the set (X1 ∪X2 ∪ . . . ∪Xn) is coinfinite and at least one of Xi is not computable.
Then KBA(E(X1, X2, . . . , Xn)) = ∅.

Corollary 4 contrasts with the results of Gavryushkin, Khoussainov, and Stephan
[11] on c.e. linear orders. In particular, they proved [11, Theorem 39] the following:
If X is a semirecursive simple set, then E(X) realizes the orders ω+n, n+ω∗, and
ω + 1 + ω∗ for all n.

Corollary 5. There are c.e. equivalence relations E and F such that KBA(E) ̸= ∅,
KBA(F ) ̸= ∅, and KBA(E ⊕ F ) = ∅.

Proof. Assume that E = Id2 and F is a non-computable c.e. equivalence relation
such that KBA(F ) ̸= ∅. For a particular example of such a relation F , see Theorem 1
below. Then for any x ∈ ω, the class [2x]E⊕F is computable and [2x + 1]E⊕F is
non-computable. Thus, by Lemma 2, the sum E ⊕ F does not realize any Boolean
algebra.

Corollary 5 shows that, in general, the conditions KBA(E) ̸= ∅ and E ≤c E1

together do not imply that KBA(E1) is also non-empty.
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5. Weakly precomplete equivalence relations

An equivalence relation E is weakly precomplete if for any total computable
function φe, there is an element x such that (xEφe(x)). The notion of weak precomp-
leteness was introduced by Badaev [14], and it is closely connected with the theory
of numberings [7]. For further background, see [15].

Proposition 3. Suppose that E is a weakly precomplete c.e. equivalence relation.
Then E does not realize a Boolean algebra.

Proof. Note that any weakly precomplete c.e. equivalence relation contains infinite-
ly many classes. Assume that E is a weakly precomplete c.e. equivalence relation,
and B = (ω/E,∨,∧, C, 0, 1) is a c.e. Boolean algebra. Then C(x) is a total comput-
able function, and for any x ∈ ω, we have [x]E ̸= [C(x)]E . This contradicts the
weak precompleteness of E.

6. Connections to c.e. linear orders

In this section, the relation ≤tt is the truth-table reducibility (see [16] for details).

Theorem 1. Assume that E is a c.e. equivalence relation. There is a c.e. equivalen-
ce relation EInt such that EInt ≡tt E and EInt has the following property: If
L = (ω/E,E) is a c.e. linear order with the least element, then EInt realizes the
interval Boolean algebra Int(L).

Proof. If E has finitely many equivalence classes, say n, then any linear order
of the form (ω/E,E) has exactly n elements. Thus, we may take EInt to be the
relation Id2n .

Suppose that E has infinitely many equivalence classes. We fix a computable
sequence of equivalence relations {Es}s∈ω with the following properties:

∪
s E

s = E,
E0 = idω, Es ⊆ Es+1 for all s. Moreover, we assume that for every s, the relation
Es+1 satisfies one of the following:

(1) Es+1 = Es, or
(2) there are elements a and b such that [a]Es ̸= [b]Es , [a]Es+1 = [a]Es ∪ [b]Es ,

and for all c /∈ [a]Es+1 , we have [c]Es+1 = [c]Es .
Recall that for x ∈ ω, Dx is a finite set which has number x in the standard

numbering of all finite subsets of ω. For x, y ∈ ω, we say that (x, y) ∈ EInt iff the
cardinalities of the sets Dx and Dy have the same parity and

(1) {[a]E : card([a]E ∩Dx) is odd} = {[b]E : card([b]E ∩Dy) is odd} .

It is easy to see that EInt is an equivalence relation. Moreover, it is not difficult
to show that the condition (1) is equivalent to the following: There is a number s
such that

{[a]Es : card([a]Es ∩Dx) is odd} = {[b]Es : card([b]Es ∩Dy) is odd} .

Thus, EInt is a c.e. set. Furthermore, we have E ≤m EInt and EInt ≤tt E.
Note that if E = idω, then EInt = idω and the proof is trivial. Thus, we may

assume that there are two elements c0 and c1 such that c0 ̸= c1 and c0Ec1.
Now suppose that L = (ω/E,E) is a c.e. linear order with the least element, and

let e0 be the least element of L. Fix a computable enumeration {Es}s∈ω such that
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E =
∪

s Es, Es is a finite set, and Es ⊆ Es+1 for all s. For a, b ∈ ω, define

[a, b)s = {x ∈ ω : x ̸= b and ∃y(yEsx & aEs y Es b)},
[a,∞)s = {x ∈ ω : ∃y(yEsx & aEs y)}.

We introduce some auxiliary notations. Suppose that ā = a1, a2, . . . , an is a tuple
of natural numbers and let D = {a1, a2, . . . , an}. We find the least s0 ∈ ω such that
the induced structure L(ā, s0) = (D/(Es0∩D2),Es0∩D2) is a linear order (here D2

is the Cartesian square of D). Denote this s0 by s∗(ā). Let σ be the permutation of
the set {1, 2, . . . , n} such that [aσ(1)]Es0 Es0 [aσ(2)]Es0 Es0 . . .Es0 [aσ(n)]Es0 and the
tuple σ(ā) = aσ(1), aσ(2), . . . , aσ(n) has the least Gödel number. Then for s ≥ s0, by
ints(ā) we denote the following finite union of the intervals in the order L(ā, s):

ints(ā) =


[aσ(1), aσ(2))s ∪ [aσ(3), aσ(4))s ∪ . . . ∪ [aσ(n−1), aσ(n))s,

if n is even,
[aσ(1), aσ(2))s ∪ [aσ(3), aσ(4))s ∪ . . . ∪ [aσ(n−2), aσ(n−1))s∪

[aσ(n),∞)s, if n is odd.

We also set intL(ā) = {x ∈ ω : [x]E ⊆
∪

s≥s∗(ā) int
s(ā)}.

Now we are ready to give a brief informal explanation of our construction.
Essentially, we emulate the well-known effective transformation of a computable
linear order M into a computable copy of the interval algebra Int(M) (see, e.g.,
Proposition 3.2.1 in [6]). For x ∈ ω and our c.e. order L, if Dx = {a1 E a2 E . . . E
an}, then the equivalence class [x]EInt contains all possible codes of the element
intL(a1, a2, . . . , an) from the interval algebra Int(L).

We define the Boolean algebra A = (ω/EInt,∨A,∧A, CA, 0A, 1A). Choose the
numbers n0 and n1 such that Dn0 = {c0, c1} and Dn1 = {e0}. Set 0A = n0 and
1A = n1. Here we give a detailed definition only for the union ∨A. Assume that
x, y ∈ ω. If Dx = ∅ or Dy = ∅, then set (x ∨A y) = z, where Dz = Dx ∪Dy. Now
suppose that Dx = {a1 <ω a2 <ω . . . <ω an} and Dy = {b1 <ω b2 <ω . . . <ω bm},
where <ω is the standard ordering of natural numbers. Let s0 = s∗(e0, ā, b̄) and
consider the finite interval algebra D = Int(L(e0, ā, b̄, s0)). We find the element
p ∈ D which is equal to the union ints0(ā) ∨D ints0(b̄). Choose dj ∈ Dx ∪ Dy,
1 ≤ j ≤ k, such that dj Es0 dj+1 for all j and p = ints0(d1, d2, . . . , dk). Find the
number z0 such that Dz0 = {d1, d2, . . . , dk} and set (x ∨A y) = z0. The operations
∧A and CA are defined in a similar way. It is straightforward to prove that the
constructed structure A is a c.e. Boolean algebra isomorphic to Int(L).

Fokina, Khoussainov, Semukhin, and Turetsky [5, Theorem 24] proved that there
is a non-computable c.e. equivalence relation E that realizes both (Q,≤) and (ω2,≤
). This and Theorem 1 together imply the following

Corollary 6. There is a non-computable c.e. equivalence relation F such that
it realizes both the countable atomless Boolean algebra and the interval algebra
Int(ω2).

7. Connections to c.e. groups

Theorem 2. There exists a c.e. equivalence relation E with the following properties:
(1) E is non-computable and [a]E ≡m E for all a ∈ ω,
(2) E realizes a c.e. abelian group,
(3) E does not realize any Boolean algebra.
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Proof. Without loss of generality, we may identify ω with 3<ω. Consider the group
G0 such that it consists of all finite ternary strings, and the group operation of G0 is
bitwise addition modulo 3. More formally, let E0 be the smallest equivalence relation
on 3<ω with the following property: For any σ ∈ 3<ω, we have (σ, σ 0̂) ∈ E0. The
universe of G0 is equal to ω/E0, and the addition on G0 is induced by the bitwise
addition modulo 3; for example, we have [011221]E0 + [0011]E0 = [012021]E0 .

Fix a hypersimple set A. The relation E is the smallest equivalence relation on
3<ω such that E ⊇ E0 and for any σ and τ , the following holds: If |σ| = |τ |, then
we have

(σ, τ) ∈ E iff σ(k) = τ(k) for all k ̸∈ A.

It is easy to show that the relation E is c.e. and A ≤m E. Therefore, the structure
G0/E is a c.e. abelian group.

Lemma 3. If a c.e. equivalence relation F realizes a group, then for any x ∈ ω,
we have [x]F ≡m F .

Proof. It is clear that [x]F ≤m F . For x, y ∈ ω, we have the following:

(yFx) ⇔ y−1x ∈ [1]F ⇔ y−1x2 ∈ [x]F .

Hence, [x]F ≡m F .

Using Lemma 3, we deduce that [a]E ≡m E for all a ∈ ω.
Now we prove that E cannot realize a Boolean algebra. Assume that B is a c.e.

Boolean algebra realized by E. Suppose that A = {a0 <ω a1 <ω a2 <ω . . .}. Notice
that for an element σ ∈ B, we have C(σ) ̸∈ [σ]E . This implies that there is a number
m such that σ(am) ̸= (C(σ))(am).

We define a computable total function f(x) as follows. Let

f(0) = max {k ∈ ω : (C(Λ))(k) ̸= 0} ,

where Λ is the empty string. It is easy to see that f(0) ≥ a0. Now assume that f(n)
is already defined and f(n) ≥ an. We define

f(n+ 1) = max
{
k : There is a string σ such that |σ| = f(n) + 1

and (C(σ))(k) ̸= 0
}
.

Suppose that Mn = {σ ∈ 3<ω : σ(ak) = 0 for all k with an+1 ≤ ak < |σ|}. Note that
the set Mn contains exactly 3n+1 pairwise E-inequivalent strings. Since 3n+1 is an
odd number and f(n) ≥ an, there is a string σ0 such that σ0 ∈ Mn, |σ0| = f(n)+1,
and C(σ0) ̸∈ Mn. This implies that f(n+ 1) ≥ an+1.

We built the computable function f(x) such that f(n) ≥ an for all n ∈ ω. This
contradicts the hyperimmunity of the set A.
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