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Various problems in computational chemistry demand predicting energies and forces for a 

given atomic structures. There are two main approaches to get this predictions. The first one is to use 

ab initio calculations, like DFT methods, the second one is classic potentials. The first approach is 

very computationally expensive, while classic potentials usually provide insufficient accuracy. 

Machine learning algorithms provide both sufficient accuracy and low computational costs. 

In this work we developed such machine learning potential. 

            The general scheme of machine learning potentials is that they are trained on some amount of 

atomic structures for which energies or/and forces are calculated via ab initio calculations and after 

using them energies or/and forces for a new unseen atomic structures can be predicted very fast. 

            First we fitted pair potentials. At this step we assumed that there were only two-particles 

interactions, which are described by pair potentials. We approximated this function with B-splines, 

and found the best pair potential with the lowest error on energies and forces.  The model with only 

pair interaction showed relatively high accuracy, thereby we concluded that this part gives the largest 

contribution into the total potential. 

             After that we included three-particles interactions, which are described by three-particles 

potential. In contrast to two-particles potential this is a function of three variables. It was also 

approximated by three-dimensional B-splines. Following this idea other many-particles interactions 

can be described, but it would require functions of higher number of variables, so extending this 

approach in this way is very computationally costly. 

             In order to improve the accuracy of machine learning potentials and include other many-

particles interactions we decided to follow existing approaches in this field.  We chose the linear 

regression of Bispectrum components, which is called SNAP. 

 

 

    

 

 

 

 


