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RETRACTABLE AND CORETRACTABLE MODULES

A. N. Abyzov and A. A. Tuganbaev UDC 512.552

Abstract. In this paper, we study mod-retractable modules, CSL-modules, fully Kasch modules, and
their interrelations. Right fully Kasch rings are described. It is proved that for a module M of finite
length, the following conditions are equivalent. (1) In the category σ(M), every module is retractable.
(2) In the category σ(M), every module is coretractable. (3) M is a CSL-module. (4) Ext1R(S1, S2) = 0
for any two simple nonisomorphic modules S1, S2 ∈ σ(M). (5) M is a fully Kasch module.

1. Introduction

All rings are assumed to be associative and with nonzero identity element; all modules are assumed
to be unitary.

A module M is said to be retractable if HomR(M, N) �= 0 for every nonzero submodule N of M .
If every module in the category σ(M) is retractable, then the module M is said to be mod-retractable.
A ring R is said to be right mod-retractable if every right R-module is retractable. In [1, Theorem 3.5], it
is proved that the class of SV-rings coincides with the class of regular mod-retractable rings R such that
every primitive image of R is Artinian. In [1,10], it is proved that the class of commutative mod-retractable
rings coincides with the class of commutative semi-Artinian rings.

A module M is said to be coretractable if HomR(M/N, M) �= 0 for every proper submodule N of
the module M . If every module in the category σ(M) is coretractable, then the module M is called
a CC module. A ring R is called a right CC ring if every right R-module is coretractable. Coretractable
modules are studied in [4]. In [1, 17], right CC rings are described.

If every simple module in the category σ(M) can be embedded in the module M , then the module M
is called a Kasch module. If every module in the category σ(M) is a Kasch module, then the module M is
called a fully Kasch module. Kasch modules were introduced in [3]. The same paper contains the following
open question: Describe fully Kasch rings and modules.

A module M is called a CSL module if every module N in σ(M) such that EndR(N) is a division
ring, is a simple module. A ring R is called a right CSL ring if the module RR is a CSL module. In [14],
it is proved that the class of commutative CSL rings coincides with the class of commutative rings R such
that the Krull dimension of R is equal to zero. Perfect CSL rings are described in [2]. Semi-Artinian CSL
rings are described in [1].

In the present paper, we study interrelations between the above-mentioned classes of rings and mod-
ules. In Sec. 3, we consider mod-retractable rings and modules. In Sec. 4, we study CC rings and fully
Kasch rings. In Corollary 4.6, we describe right fully Kasch rings. In Theorem 4.9, we prove that the
class of fully Kasch rings coincides with the class of CC rings. In Sec. 5, we consider CSL modules and
their interrelations with mod-retractable modules.

We refer to [12,15] for all the undefined notions in this paper.

2. Preliminaries

For two modules M and N , the module N is said to be M -subgenerated if N is isomorphic to
a submodule of a homomorphic image of some direct sum of copies of M . In the category of all right
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R-modules, the full subcategory, consisting of all M -subgenerated modules, is denoted by σ(M); it is
called the Wisbauer category of the module M .

Theorem 2.1 ([13, Proposition 2.2]). Let M be a right R-module and let M =
⊕

i∈I

Mi. Then the following
conditions are equivalent.

(1) For any two distinct subscripts i and j in I, the modules Mi and Mj do not have isomorphic
nonzero subfactors.

(2) For any two distinct subscripts i and j in I, we have the relation σ(Mi) ∩ σ(Mj) = 0.
(3) For an arbitrary module N ∈ σ(M), there exist uniquely defined modules Ni ∈ σ(Mi), i ∈ I, such

that N =
⊕

i∈I

Ni.

Lemma 2.2. Let M be a right R-module and let S ∈ σ(M) be a simple module. Then the module S is
isomorphic to the socle of some factor module of the module M .

Proof. The assertion directly follows from the property that the injective hull of the module S in the
category σ(M) is generated by the module M .

Theorem 2.3. Let R be a ring and let P be a finitely generated quasi-projective semi-Artinian right
R-module.

(1) EndR(P ) is a right semi-Artinian ring.
(2) P is a module with finite exchange property.
(3) P is an I0-module.

Proof. (1). We set α = Loewy(P ). It is clear that HomR

(
P, Socβ(P )

)
is an ideal of the ring EndR(P ) for

every ordinal number β ≤ α. Since P is a finitely generated quasi-projective module,

HomR

(
P, Socβ+1(P )

)
/ HomR

(
P, Socβ(P )

) ∼= HomR

(
P, Socβ+1(P )/ Socβ(P )

)

is a semisimple right EndR(P )-module for every ordinal number β ≤ α. Since P is finitely generated, we
get that for every limit ordinal number γ < α, we have the relation

HomR

(
P, Socγ(P )

)
=

⋃

β<γ

HomR

(
P, Socβ(P )

)
.

Therefore, it follows from [7, 3.12] that the ring EndR(P ) is right semi-Artinian.
(2). The assertion follows from (1) and [6, 11.17] and [5, Theorem 1.4].
(3). Let N be a nonsmall submodule of the module P . Since P is a finitely generated quasi-projective

module, we have that for some homomorphism f ∈ EndR(P ) that is not contained in J
(
EndR(P )

)
we

have the inclusion f(P ) ⊂ N . Since each right semi-Artinian ring is an I0-ring, it follows from (1) that
EndR(P ) is an I0-ring. Therefore, for some homomorphism g ∈ EndR(P ), we have that fg is a nonzero
idempotent of the ring EndR(P ) and fg(P ) ⊂ N .

3. mod-Retractable Modules

Lemma 3.1. For a semiprimitive I0-ring R, the following conditions are equivalent.
(1) Every nonsingular right R-module is retractable.
(2) Every nonzero nonsingular right R-module contains a nonzero injective submodule.
(3) Every nonzero right ideal of the ring R contains a nonzero injective submodule of the module RR.
(4) Every nonzero submodule of any projective right R-module contains a nonzero injective submodule.

Proof. The implications (2) =⇒ (1) and (4) =⇒ (3) are directly verified.
(3) =⇒ (2). Let M be a nonzero nonsingular right R-module and let m be a nonzero element of M .

Since the right ideal Ann(m) of the ring R is not essential, the submodule mR contains a nonzero
submodule that is isomorphic to some submodule of the module RR. Therefore, the module M contains
a nonzero injective submodule.
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(1) =⇒ (4). Let P0 be a nonzero submodule of a projective right R-module P . Since R is a semiprim-
itive I0-ring, E(P ) is a nonsingular module. Therefore, there exists a nonzero homomorphism f ∈
HomR(E(P ), P0). It follows from [9, Theorem 3.2] that Im f contains a nonzero direct summand A of
the module P . Let π be the projection from P onto A. Then the kernel of the homomorphism π|P0

f is
a direct summand in E(P ). Therefore, the submodule P0 contains a nonzero injective submodule.

A module M is called a max-module if every nonzero module in the category σ(M) has a maximal
submodule.

Lemma 3.2. Let M be a mod-retractable module. Then we have the following assertions.
(1) M is a max-module.
(2) M is a CSL module.
(3) If M is quasi-projective, then M is a self-generated module.

Proof. (1) and (2). The assertions are directly verified.
(3). It follows from Lemma 2.2 that M generates every simple module in the category σ(M). There-

fore, it follows from [15, 18.5] that M is a self-generated module.

Theorem 3.3. Let M be a projective semiperfect module in the category σ(M). If M is a semi-Artinian
module, then the following conditions are equivalent.

(1) M is a mod-retractable module.
(2) M =

⊕

i∈I

Mi, where σ(Mi) ∩ σ(Mj) = 0 for i �= j, all simple subfactors of the module Mi are

isomorphic to each other, and Mi is the direct sum of pairwise isomorphic local max-modules for
every i ∈ I.

(3) The category σ(M) has a projective generator of the form
⊕

i∈I

Pi, where σ(Pi) ∩ σ(Pj) = 0 for

i �= j, and Pi is a local max-module such that all simple subfactors of Pi are isomorphic to each
other for every i ∈ I.

Proof. (1) =⇒ (2). By [15, 42.5], the module M can be represented in the form M =
⊕

i∈I

Mi, where Mi

is a direct sum of pairwise isomorphic local modules and the modules Mi and Mj do not have pairwise
isomorphic local direct summands for i �= j. We assume that σ(Mi) ∩ σ(Mj) �= 0. Therefore, it follows
from Lemma 2.2 that for some distinct subscripts i, j ∈ I and some local direct summands Li and Lj of
the modules Mi and Mj , respectively, we have the isomorphism Soc(Li/Ni) ∼= Soc(Lj/Nj), where Li/Ni

and Lj/Nj are uniform nonzero modules. Then either Li/J(Li) � Soc(Lj/Nj) or Lj/J(Lj) � Soc(Lj/Nj).
This contradicts the assumption of (1). Therefore, σ(Mi)∩ σ(Mj) = 0. Finally, it is directly verified that
all simple subfactors of the module Mi are isomorphic to each other, for every i ∈ I.

(2) =⇒ (3). The implication follows from [15, 18.5].
(3) =⇒ (1). Let N ∈ σ(M) and let S be a simple submodule of the module N . It follows from

Theorem 2.1 that N =
⊕

i∈I

Ni, where Ni ∈ σ(Pi) for every i ∈ I, and S ⊂ σ(Ni0) for some i0 ∈ I. Since

all simple modules in the category σ(Ni0) are isomorphic to each other, and M is a max-module, we have
HomR(Ni0 , S) �= 0. Therefore, HomR(N, S) �= 0.

Corollary 3.4. Let M be a projective semiperfect module in the category σ(M). If M is a finitely
generated semi-Artinian module, then the following conditions are equivalent.

(1) M is a mod-retractable module.
(2) M =

⊕

i∈I

Mi, where σ(Mi) ∩ σ(Mj) = 0 for i �= j, all simple subfactors of the module Mi are

isomorphic to each other, and Mi is the direct sum of pairwise isomorphic local max-modules for
every i ∈ I.

(3) The category σ(M) is equivalent to the category of modules over a ring R that is a finite direct
product of full matrix rings over perfect local rings.
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Corollary 3.5. For a left perfect ring R, the following conditions are equivalent.
(1) R is a right mod-retractable ring.
(2) The ring R is a finite direct product of full matrix rings over perfect local rings.

For a ring R, an indecomposable factor ring R/B is called a maximal indecomposable factor of R if
for every ideal B′ that is properly contained in the ideal B, the factor ring R/B′ is not an indecomposable
ring. A module M is said to be regular if every cyclic submodule of M is a direct summand in M . A ring R
is said to be strongly regular if a ∈ a2R for each element a ∈ R. A ring R with Jacobson radical J is said
to be semiregular if R/J is a regular ring and all idempotents of R/J can be lifted to idempotents of R.

Theorem 3.6. If R is a semiregular ring and every primitive image of R is Artinian, then the following
conditions are equivalent.

(1) R is a mod-retractable ring.
(2) R is a semi-Artinian CSL ring.
(3) R is a semi-Artinian ring and every maximal indecomposable factor of R is a full matrix ring

over a perfect local ring.

Proof. The implications (2) =⇒ (3) and (3) =⇒ (1) follow from [1, Theorem 3.3].
(1) =⇒ (2). It is clear that each mod-retractable ring is a CSL-ring. We prove that the ring R is

semi-Artinian. It follows from [1, Theorem 3.5] that R/J(R) is a SV-ring. Since the ring R is a max-ring
by Lemma 3.2, it follows from [12, Lemma 26.2] that J(R) is a t-nilpotent ideal. By [12, Remark 21.3],
the ring R is a semi-Artinian ring.

Theorem 3.7. Let P be a finitely generated quasi-projective module such that every primitive image of
the ring EndR(P ) is Artinian. Then the following conditions are equivalent.

(1) P is a mod-retractable regular module.
(2) P is an SV-module.

Proof. The implication (2) =⇒ (1) follows from [1, Theorem 3.10].
(1) =⇒ (2). It follows from [1, Theorem 3.10], [1, Lemma 1.10], and [15, 46.2] that the category σ(P )

is equivalent to the category of all right modules over the regular ring EndR(P ). Therefore, it follows
from [1, Theorem 3.5] that EndR(P ) is a SV-ring. Therefore, P is an SV-module.

4. Kasch Rings and CC Rings

Lemma 4.1. If M is a generator in σ(M), then the following conditions are equivalent.
(1) M is a fully Kasch module.
(2) For every submodule M0 of the module M , the module M/M0 is a Kasch module.
(3) For every fully invariant submodule M0 of the module M , the module M/M0 is a Kasch module.

Proof. The implications (1) =⇒ (2) and (2) =⇒ (3) are directly verified.
(3) =⇒ (1). Let N ∈ σ(M) and let M0 =

⋂

f∈HomR(M,N)

Ker(f). It is easy to see that M0 is a fully in-

variant submodule of the module M . Since N = HomR(M, N)M , we have N = HomR(M/M0, N)(M/M0).
Therefore, σ(N) ⊂ σ(M/M0). Let S ∈ σ(N) be a simple module. Then there exists an element
m ∈ M such that (m + M0)R is a simple submodule of the module M/M0 that is isomorphic to the
module S. Since the element m is not contained in the submodule M0, there exists a homomorphism
f ∈ HomR(M, N) such that f(m) �= 0. Since M0 ⊂ Ker(f), the homomorphism f induces the homomor-
phism f̄ ∈ HomR(M/M0, N) with f̄

(
(m + M0)R

) �= 0. Therefore, the module S is isomorphic to some
simple submodule of the module N .

Lemma 4.2. For an arbitrary right R-module M , we have the following assertions.
(1) If M is a finitely generated Kasch module, then M is a coretractable module.
(2) If M is a self-generated, quasi-projective, coretractable module, then M is a Kasch module.
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Proof. (1). The assertion is directly verified.
(2). Let S be an arbitrary simple module in the category σ(M). Then S ∼= A/B, where A is a finite

direct sum of isomorphic copies of the module M and B is a submodule of the module A. It follows
from [4, Proposition 2.6] that HomR(A/B, A) �= 0. Therefore, HomR(S, M) �= 0.

Lemma 4.3. For an arbitrary right R-module M , the following assertions are true.
(1) If M is a fully Kasch module, then M is a semi-Artinian module.
(2) If M is a finitely generated, quasi-projective, fully Kasch module, then M is a semiperfect module

in the category σ(M).

Proof. (1). The assertion is directly verified.
(2). By [15, 18.2], the module M/J(M) is quasi-projective. If N is a maximal and essential submodule

of the module M/J(M), then it follows from the assumption that
(
M/J(M)

)
/N is an M/J(M)-projective

simple module; it is clear that this is impossible. Therefore, M/J(M) is a semisimple finitely generated
module. Now it follows from (1) and Theorem 2.3 that M is a finite direct sum of local modules. Therefore,
it follows from [15, 42.5] that M is a semiperfect module in the category σ(M).

Proposition 4.4. If M is a projective semiperfect module in the category σ(M), then the following
conditions are equivalent.

(1) M is a fully Kasch module.
(2) In the category σ(M), every cyclic module is coretractable.
(3) In the category σ(M), every finitely generated module is coretractable.
(4) M =

⊕

i∈I

Mi, where σ(Mi) ∩ σ(Mj) = 0 if i �= j, all simple subfactors of the module Mi are

isomorphic to each other, and Mi is a direct sum of pairwise isomorphic local semi-Artinian
modules for every i ∈ I.

(5) The category σ(M) has a projective generator of the form
⊕

i∈I

Pi, where σ(Pi) ∩ σ(Pj) = 0 for

i �= j, and Pi is a local semi-Artinian module such that all simple subfactors of Pi are isomorphic
to each other for every i ∈ I.

Proof. The proof of the implication (1) =⇒ (4) is similar to the proof of the implication (1) =⇒ (2) in
Theorem 3.3.

The implications (3) =⇒ (2) and (1) =⇒ (3) are directly verified.
(4) =⇒ (5). The implication directly follows from [15, 18.5].
(5) =⇒ (1). Let N ∈ σ(M) and let S ∈ σ(N) be a simple module. By Theorem 2.1, N =

⊕

i∈I

Ni,

where Ni ∈ σ(Pi) for every i ∈ I. It follows from Lemma 2.2 that S ∼= Ai0/Bi0 , where Ai0 , Bi0 are
submodules of the module Ni0 for some i0 ∈ I. Since all simple modules in σ(Pi0) are isomorphic to each
other and Soc(Ni0) �= 0, the module S is isomorphic to some submodule of the module N .

(2) =⇒ (1). Let N ∈ σ(M) and let S ∈ σ(N) be a simple module. It follows from Lemma 2.2 that
S ∼= A/B, where A and B are submodules of the module N . Without loss of generality, we can assume
that A is a cyclic module. Since A is a coretractable module, the simple module S is isomorphic to some
submodule of the module N .

The following assertion directly follows from Lemma 4.3, Proposition 4.4, and [15, 46.2].

Corollary 4.5. If P is a finitely generated quasi-projective module, then the following conditions are
equivalent.

(1) P is a fully Kasch module.
(2) In the category σ(P ), every cyclic module is coretractable.
(3) In the category σ(P ), every finitely generated module is coretractable.
(4) The category σ(P ) is equivalent to the category of right modules over a ring that is a finite direct

product of full matrix rings over left perfect local rings.
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The following assertion directly follows from Lemma 4.1 and Corollary 4.5.

Corollary 4.6. For a ring R, the following conditions are equivalent.
(1) R is a right fully Kasch ring.
(2) Over the ring R, every right finitely generated module is coretractable.
(3) Over the ring R, every cyclic right module is coretractable.
(4) Every factor ring of R is a right Kasch ring.
(5) The ring R is isomorphic to the finite direct product of full matrix rings over left perfect local

rings.

Corollary 4.7. For a ring R, the following conditions are equivalent.
(1) R is a right semi-Artinian ring and all simple right R-modules are isomorphic to each other.
(2) R is a right fully Kasch ring and all simple right modules are isomorphic to each other.
(3) Every nonzero injective right R-module is a generator in the category of all all right R-modules.
(4) The ring R is isomorphic to a matrix ring over a local, left perfect ring.

Proof. The implications (1) =⇒ (2) and (4) =⇒ (3) are directly verified.
The implication (2) =⇒ (4) follows from Corollary 4.6.
(3) =⇒ (1). Let S be a simple right R-module. We consider an arbitrary nonzero right R-module M .

It follows from the assumption that the module S is isomorphic to some simple submodule of the module
E(M). Therefore, R is a right semi-Artinian ring such that all simple right R-modules are isomorphic to
the module S.

The proof of the following assertion is similar to the proof of Proposition 3.2 in [4].

Lemma 4.8. If R is a ring and every free right R-module is coretractable, then the following conditions
are equivalent.

(1) R is a max-ring.
(2) Every submodule of the module RR has a maximal submodule.

Theorem 4.9. For a ring R, the following conditions are equivalent.
(1) For every ideal I of the ring R, each free right module over the ring R/I is coretractable.
(2) The ring R is isomorphic to the finite direct product of full matrix rings over perfect local rings.

Proof. The implication (2) =⇒ (1) is directly verified.
(1) =⇒ (2). It is clear that every factor ring of the ring R is a right Kasch ring. Therefore, it follows

from Corollary 4.6 and Lemma 4.1 that the ring R is isomorphic to the finite direct product of full matrix
rings over left perfect local rings. Therefore, it is sufficient to prove that R is a right max-ring. Let I
be the sum of all radical submodules of the module RR. We assume that I �= 0. It is clear that I is an
ideal. Since R is a right semi-Artinian ring, it follows from [5, Theorem 3.1] that I2 �= I. Then I/I2 is
a nonzero radical right R/I-module. Let A/I be a nonzero submodule of the module R/IR/I . Then A
contains a maximal submodule M . Since AJ(R) = J(A) and I = IJ(R), we have I ⊂ J(A). Therefore,
I ⊂ M . Therefore, every nonzero submodule of the module R/IR/I contains a maximal submodule.
Therefore, it follows from Lemma 4.8 that R/I is a max-ring. On the other hand, the right R/I-module
I/I2 is a nonzero radical module. It follows from this contradiction that I = 0. Therefore, it follows from
Lemma 4.8 that R is a right max-ring.

The following assertion directly follows from the previous results and [1, 17].

Theorem 4.10. For a ring R, the following conditions are equivalent.
(1) R is a fully Kasch ring.
(2) For every ideal I of the ring R, the factor ring R/I is a Kasch ring.
(3) Over the ring R, every finitely generated right or left module is coretractable.
(4) Over the ring R every cyclic right or left module is coretractable.
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(5) R is a right CC ring.
(6) R is a left CC ring.
(7) The ring R is isomorphic to the finite direct product of full matrix rings over perfect local rings.

5. CSL Rings and Modules

Lemma 5.1. Let R be a ring and let M be a semi-Artinian right R-module such that all simple subfactors
of M are isomorphic to each other. Then the following conditions are equivalent.

(1) M is a CSL module that is a max-module.
(2) M is a mod-retractable module.

Proof. (1) =⇒ (2). Let N be a nonzero module in the category σ(M). Since M is a max-module,
we have the least nonlimit ordinal number α such that Socα(N) � J(N). Then Socα(N)/ Socα−1(N) �

J(N)/ Socα−1(N). Therefore, some simple submodule S of the module N/ Socα−1(N) is a direct summand
in N/ Socα−1(N). Thus, HomR(N/ Socα−1(N), S) �= 0. Since all simple subfactors of the module N are
isomorphic to each other, N is a retractable module.

The implication (2) =⇒ (1) is directly verified.

It is easy to see that for every prime integer p, the Z-module Cp∞ is a CSL module that is not
mod-retractable.

Lemma 5.2. Let P be a finitely generated quasi-projective semi-Artinian max-module such that the fol-
lowing conditions hold.

(1) For all pairwise nonisomorphic simple modules S1, S2 ∈ σ(P ), we have that Ext1R(S1, S2) = 0.
(2) P = P1 ⊕ P2, where P1 is a direct sum of local modules, P2 is a submodule of the module P , and

the modules P1 and P2 do not have isomorphic nonzero direct summands.
Then HomR(P1, P2) = 0 and HomR(P2, P1) = 0.

Proof. We assume that HomR(P2, P1) �= 0. It follows from Theorem 2.3 that P0 = HomR(P2, P1)P2 ⊂
J(P1). Let M be a maximal submodule of the module P0 and let P ′ be a ∩-complement of the mod-
ule P0/M in the module P1/M . Then L = (P1/M)/P ′ is a uniform module such that Soc(L) ∼=
P0/M and Soc(L) ⊂ J(L). Since P is quasi-projective, we have that HomR(P2, L)P2 = Soc(L) and
HomR

(
P2, L/Soc(L)

)
P2 = 0. Since P is a semi-Artinian module, the module L contains a local submod-

ule L0 of length 2. Since HomR

(
P2, Soc(L0)

) �= 0 and HomR

(
P2, L0/J(L0)

)
= 0, the simple modules

Soc(L0) and L0/J(L0) are not isomorphic to each other, and Ext1R
(
Soc(L0), L0/J(L0)

) �= 0. This contra-
dicts the assumption of the lemma. The relation HomR(P1, P2) = 0 is similarly proved.

Theorem 5.3. Let P be a finitely generated semi-Artinian quasi-projective module. If every primitive
image of the ring End(P ) is Artinian, then the following conditions are equivalent.

(1) P is a self-generated CSL module that is a max-module.
(2) P is a mod-retractable module.
(3) P is a self-generated max-module and Ext1R(S1, S2) = 0 for any two simple nonisomorphic modules

S1, S2 ∈ σ(P ).
(4) The category σ(P ) is equivalent to the category of right modules over a semi-Artinian ring S such

that every maximal indecomposable factor of S is a full matrix ring over a perfect local ring.

Proof. (1) =⇒ (3). The assertion is directly verified.
(2) =⇒ (1). The implication follows from Lemma 3.2.
(4) =⇒ (2). The implication follows from [1, Theorem 3.3].
(3) =⇒ (4). By [15, 46.2], it is sufficient to prove that EndR(P ) is a semi-Artinian ring such that

every maximal indecomposable factor of this ring is a full matrix ring over a perfect local ring. With the
use of the transfinite induction, for every ordinal number α, we construct a fully invariant submodule Pα
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in the module P , as follows. For α = 0, we set P0 = 0. If α = β + 1, then Pβ+1/Pβ =
∑

π∈Iβ

π(P/Pβ),

where Iβ is the set of all nonzero indecomposable central idempotents π ∈ End(P/Pβ) such that π(P/Pβ)
is a finite direct sum of pairwise isomorphic local modules. If α is a limit ordinal number, we set Pα =⋃

β<α

Pβ . It follows from Theorem 2.3, Lemma 5.2, and [1, Lemma 1.2] that Pτ = P for some ordinal

number τ . It is easy to see that for an arbitrary ordinal number β and for every π ∈ Iβ module π(P/Pβ)
is a self-generated quasi-projective module. Since P is a max-module, it follows from [15, 46.2] that
EndR

(
π(P/Pβ)

)
is a full matrix ring over a perfect local ring. Since P is a quasi-projective finitely

generated module, Hom(P, Pα+1)/ Hom(P, Pα) is a direct sum of full matrix rings over perfect local rings.
Since EndR(P ) =

⋃

β≤τ

Hom(P, Pβ), we have that EndR(P ) is a semi-Artinian ring such that every maximal

indecomposable factor of this ring is a full matrix ring over a perfect local ring.

Corollary 5.4. Let P be a projective semiperfect module in the category σ(P ). If P is a finitely generated
semi-Artinian module, then the following conditions are equivalent.

(1) P is a self-generated CSL module that is a max-module.
(2) P is a mod-retractable module.
(3) The category σ(P ) is equivalent to the category of modules over a ring S that is a finite direct

product of full matrix rings over perfect local rings.

Corollary 5.5. If R is a right semi-Artinian ring and every primitive image of R is an Artinian ring,
then the following conditions are equivalent.

(1) R is a right CSL ring and a right max-ring.
(2) R is a right mod-retractable ring.
(3) R is a semi-Artinian ring such that every maximal indecomposable factor of R is a full matrix

ring over a perfect local ring.

Theorem 5.6. For a right or left quasi-invariant ring R, the following conditions are equivalent.
(1) R is a mod-retractable ring.
(2) R is a semi-Artinian CSL ring.
(3) R is a semi-Artinian ring such that every maximal indecomposable factor of R is a local perfect

ring.

Proof. (1) =⇒ (2). It follows from [16, Corollary 2.4] that R/J(R) is a reduced ring. Therefore, it follows
from [11, Theorem 3.2] that R/J(R) is a semi-Artinian strongly regular ring. Since R is a max-ring,
it follows from [12, Remark 21.3 and Lemma 26.2] that the ring R is semi-Artinian. Therefore, R is
a semi-Artinian ring such that every primitive image of R is a division ring. Now it follows from Lemma 3.2
that R is an CSL ring.

(2) =⇒ (3). Since the ring R is right quasi-invariant, the implication directly follows from [1, Theo-
rem 3.3].

(3) =⇒ (1). The implication follows from [1, Theorem 3.3].

Corollary 5.7. For a right (or left) invariant ring R, the following conditions are equivalent.
(1) R is a mod-retractable ring.
(2) R is a semi-Artinian CSL ring.
(3) R is a semi-Artinian ring.

Theorem 5.8. Let R be a ring and let M be a right R-module of finite length. Then the following
conditions are equivalent.

(1) Every module N of finite length in the category σ(M) such that End(N) is a division ring, is
a simple module.

(2) M is a CSL module.
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(3) Every module of finite length in the category σ(M) is retractable.
(4) M is a mod-retractable module.
(5) Ext1R(S1, S2) = 0 for any two simple nonisomorphic modules S1, S2 ∈ σ(M).
(6) M is a fully Kasch module.
(7) M is a CC module.
(8) In the category σ(M), all simple subfactors of every indecomposable module of finite length are

isomorphic to each other.
(9) In the category σ(M), all simple subfactors of every indecomposable module are isomorphic to

each other.

Proof. The implications (2) =⇒ (1), (4) =⇒ (3), (1) =⇒ (5), (2) =⇒ (5), (3) =⇒ (5), (6) =⇒ (7),
(7) =⇒ (1), (9) =⇒ (1), (9) =⇒ (2), and (9) =⇒ (8) are directly verified.

The implications (9) =⇒ (4), (9) =⇒ (6), and (8) =⇒ (9) follow from Theorem 2.1.
(5) =⇒ (8). We assume that the category σ(M) has an indecomposable module of finite length that

has nonisomorphic simple subfactors. Let N be an indecomposable module of least length in the category
σ(M) such that N does not satisfy (8). Then J(N) = N1 ⊕ · · · ⊕ Nk, where σ(Ni) ∩ σ(Nj) = 0 for i �= j,
Ni is a nonzero submodule of the module N , and all simple subfactors of the module Ni are isomorphic
to each other for every i.

Let k = 1 and let the module N be not local. Then the factor module N/J(N) contains a simple
submodule S such that S /∈ σ

(
J(N)

)
. Let N0 be a submodule of the module N with N0/J(N) = S. It is

clear that lg(N0) < lg(N). Consequently, the module N0 has a decomposition N0 = A1⊕· · ·⊕As, where for
every i, we have that Ai is an indecomposable module such that all simple subfactors of it are isomorphic
to each other. Since Soc(N0) ⊂ Soc(N) ⊂ J(N), we have Soc(N0) ∈ σ

(
J(N)

)
. Since N0/J(N) = S for

some subscript i0, the module Ai0 has a simple subfactor that is isomorphic to the module S. Thus, the
indecomposable module Ai0 has two nonisomorphic simple subfactors; this contradicts the choice of the
module N .

It is easy to see that if N is a local module, then for some submodule N0 in N , the module N/N0 is
a local module of length two such that Soc(N/N0) � N/ Soc(N/N0). Therefore, without loss of generality,
we can assume that N is a nonlocal module and k > 1. Let Ni be the closer of the module Ni in the
module N for every i and let S = N0/J(N) be an arbitrary simple submodule of the semisimple module
N/J(N). Since lg(N0) < lg(N), we have that N0 = A1 ⊕ · · · ⊕ As, where all simple subfactors of the
module Ai are isomorphic to each other for every i, σ(Ai)∩σ(Aj) = 0 for i �= j, and every simple subfactor
of the module As is isomorphic to the module S. We take a subscript i0 such that all simple subfactors
of the module Ni0 are isomorphic to the module S. Since lg(Ni0) < lg(N) and all simple submodules of
the module Ni0 are isomorphic to each other, it follows from the choice of the module N that all simple
subfactors of the module Ni0 are isomorphic to each other. Then Ni0 +As is an essential extension of the
module Ni0 . Therefore, Ni0 + As = Ni0 and As ⊂ Ni0 . Since A1 ⊕ · · · ⊕ As−1 ⊂ J(N), we have

N0 = A1 ⊕ · · · ⊕ As ⊂ N1 ⊕ · · · ⊕ Nk.

It is clear that the module N can be represented in the form N = B1 + · · · + Bt, where J(N) ⊂ Bi and
Bi/J(N) is a simple submodule for every i. Therefore, we have N = N1 ⊕ · · · ⊕ Nk; this contradicts the
indecomposability of the module N .

Corollary 5.9. For Artinian module M the following conditions are equivalent.
(1) M is a mod-retractable module.
(2) M is a CSL module that is a max-module.
(3) M is a module of finite length and M = M1 ⊕ · · · ⊕ Mn, where Mi is indecomposable module for

every 1 ≤ i ≤ n and all simple subfactors of the module Mi are isomorphic to each other.

Proof. The implication (1) =⇒ (2) follows from Lemma 3.2. The implication (3) =⇒ (2) follows from
Theorem 5.8.
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(2) =⇒ (3). For every nonnegative integer n, we inductively define a submodule J (n)(M) of the
module M such that J (0)(M) = M and J (n+1)(M) = J

(
J (n)(M)

)
. Since M is an Artinian max-module,

there exists a nonnegative integer n0 such that J (n0)(M) = 0 and J (n+1)(M)/J (n)(M) is a semisimple
module of finite length for every nonnegative integer n. Thus, M is a module of finite length, and the
implication follows from Theorem 5.8.

The following assertion is similar to Theorem 1.2 in [8]. We note that the proof of the previous
theorem and the proof of Theorem 1.2 in [8] are distinct.

Corollary 5.10. Let R be a ring and let M be a right R-module. Then the following conditions are
equivalent.

(1) Every module N in the category σ(M) such that N is of finite length and End(N) is a division
ring, is a simple module.

(2) In the category σ(M), every module N of finite length is retractable.
(3) Ext1R(S1, S2) = 0 for any two simple nonisomorphic modules S1 and S2 in σ(M).
(4) In the category σ(M), for every indecomposable module N of finite length, all simple subfactors

of N are isomorphic to each other.

Corollary 5.11. Let P be a quasi-projective module of finite length. Then the following conditions are
equivalent.

(1) P is a CSL module.
(2) P is a mod-retractable module.
(3) Ext1R(S1, S2) = 0 for any two simple nonisomorphic modules S1 and S2 in σ(P ).
(4) The category σ(P ) is equivalent to the category of right modules over a semi-Artinian ring S such

that every maximal indecomposable factor of S is a full matrix ring over a perfect local ring.
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