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Summary

The iterative solution methods are investigated for the finite difference approximations of variational
inequalities with diffusion-convection operator and constraints on the gradient of solution. The methods
are easily implementable because on every iterative step one has to solve only a system of linear equations
(even in the case of nonlinear diffusion-convection operator) and a set of the minimization problems of small
dimensions. The results on the convergence of the proposed methods are given. Computational experiments
confirm the high rate of their convergence.

Key words: Variational inequality, finite difference method, iterative method, constrained saddle point
problem.

AHHOTaUMA

HMcenenoBatbl HTepalMOHHble METOIbI /11 KOHEUHO-PA3HOCTHBIX allpoKCHMaLHil BAPHALMOHHBIX Hepa-
BEHCTB C 0NlepaTopoM AU(dy3uH-KOHBEKLMH U OTPAHHUCHHSMH Ha TPAAUEHT pelleHust. MeToibl Jlerko peasu-
3yeMbl, IOTOMY YTO Ha KaXK[10M HTepaLlMOHHOM Llare TpeOyeTCsl PELIUTD JIHILLIb CUCTEMY JIHHEHHbIX YpaBHEHHIH
(mazke B cylyuae HeJIMHEHHOro OllepaTopa) n MHOXKECTBO 3aa4 MUHUMHU3aLMK MaJjloll pasMepHocTy. [Tpusene-
Hbl Pe3YJIbTaThl O CXOAUMOCTH [1PE/LI02KEHHbIX METO0B. BhluncIMTeIbHbIE SKCTIEPUMEHTbI TOATBEPXKAAI0T HX
BLICOKYIO CKOPOCTb CXOJMMOCTH.

KnioueBble cnoBa: BapualloHHOe HepaBeHCTBO, KOHEYHO-PA3HOCTHBIN METO/L, HTEPALMOHHDBIH MeTOo1,

ceJ/l/IoBast 3ajlava ¢ orpaHuyeHUsIMHU.

Introduction

Variational inequalities with constraints on the gradient of the solution are mathematical models of a
number of physical problems. These include the problem of elastic-plastic deformation, flow of Bingham
viscoplastic materials, problem of nonlinear fluid flow in porous media. Practically all known methods for
solving these problems are based on the introduction of an auxiliary function that is equal to the gradient
of the solution, and finding the saddle point of the corresponding Lagrange function. Widely used algorithms
based on the construction of so-called augmented Lagrangian technique [1], [2]. Slightly different approach to
solving this class of problems have been proposed in the articles [3], [4]. Namely, preconditioned Uzawa-type
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iterative methods for the equivalently transformed constrained saddle point problems have been proposed and
investigated. All of the above methods can be effectively implemented when solving the variational inequalities
with potential operators: on every iterative step one has to solve only a system of linear equations and a set of
two-dimensional minimization problems. But this is not so in the case of variational inequalities with nonlinear
operators, depending on both solution and its gradient. For these problems the algorithms from[1] - [4]includes
the solution of a system of nonlinear equations instead of linear ones, and this is the most time consuming part
of the algorithms.

In[5] and [6] a new method was proposed and investigated for a finite dimensional constrained saddle point
problem with linear and non-linear operators. This method being applied to a grid approximation of variational
inequality with nonlinear diffusion-convection operator keeps the same efficiency of the implementation as in
the case of potential operator. In this article we report the results on the iterative solution methods for finite
difference approximation of a variational inequality with linear and nonlinear diffusion-convection operator and
constraints on the gradient of solution. Results on the convergence of the iterative methods are cited and
numerical results for several model problems are given.

1. Formulation of the problem.
Let Q is a bounded domain with piecewise smooth boundary. Define the functions g1 (¢) : R? — R? and

g2(s,t) : R® — R which satisfy for all £ € R? and s € R the following assumptions:

g1(t) and ga(s,t) are continuous,
lgr(D)] < cltl, (g1(t1) — g1(t2), T — T2) = alty — 2>, >0,
lg2(s1,t1) — ga(s2,t2)| < Bals1 — s2| + Balts — ta|, B > 0.

Under formulated assumptions on the functions g; and go semilinear form
a(u,v) = /gl(Vu) -Vodz + /gg(u, Vu)v dz
Q Q

is bounded from H}(Q) x H}(Q) to R. We suppose that it is also strongly monotone:

a(u,u—v) —a(v,u —v) > UHqu%(Q) = a/ |Vul*dz, o> 0. (1)
Q

This property is ensured, for example, if o — |k|51 c? — bBacy = 0 > 0, where ¢y is the constant in Friedrichs
inequality: [|ul|z2(q) < cyllullmy(q)- In particular case g2(u, Vu) = v-Vu property (1) is true for any constant
vector .

Let further ¢(z) : L2(2) — R U {400} be a proper, convex and lower semicontinuous function and

f € La(82). Two classical examples of ¢(z) are: I(z) = [ |z(z)|dx and the indicator function Ix(z) of the

Q
convex and closed set K = {z € L2(Q) : |z(z)| < 1 Vz € Q}.
We consider the variational inequality: find u € H}(Q) such that

a0 =) + 9(Vol) = 0(Val) > [ f0 - w)de Vo€ HI@) (2)
Q

Because of the aforementioned properties of the form a(.,.) and functional ¢ variational inequality (2) has a
unique solution (see e.g. [7], Chapter 2, Theorem 3.1).
2. Finite difference approximation.

Let Q be unit square (0,1) x (0,1). Approximate problem (2) by a finite difference problem on the uniform
grid @ = {& = (ih,jh) : 0 < i,7 < m+1, (m+ 1)h = 1}. By V3 we denote the space of grid functions,
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which are defined in the nodes of @ and equal to 0 in the nodes of Ow. The finite difference approximation of
variational inequality (2) reads as follows: find u;, € V}, such that

an(un,vn — un) + Vr([Vavn|) = n([Vaun|) = falon — up) Yo, € Vi, (3)

where ay,, 1, and fj, are the approximations of a, 1 and f, respectively, while Vju;, = (gluh, 52uh) is the
grid gradient. Let y € R™” be the vector of nodal values of a grid function uy, , matrix L corresponds to Vj,
and convex, proper and lower semicontinuous function ¢ : R™ - RU {+o0} corresponds to vy, . Then grid
problem (3) is equivalent to the following discrete variational inequality: find y € R™ such that

(LT g1(Ly) + g2(y, Ly), v — ) + @(Lv) — p(Ly) > (fv—y) Yo e R™. (4)
Suppose the Slater condition be satisfied:
Jug such that the vector Lug € int dom .
Then 9[p(Lu)] = LT0¢(Lu), (ci.[7], Chapter I, proposition 5.7) and (4) is equivalent to inclusion
LT g1 (Lu) + go(u, Lu) + LY 0p(Lu) > f. (5)

Note that for two mentioned above particular cases of the functional v, ¢ = I and ¢ = Ik, Slater condition
is satisfied with ug = 0.

Note 1. 1) Discrete variational inequality of the form (4) (respectively, inclusion (5)) can be
obtained for the nodal parameters of the mesh function when solving the problem by finite element
method with linear or bilinear elements.

2) Inclusion (5) can be obtained by approximation directly differential inclusion (formal writing of
variational inequality (2)):

—divg; (Vu) + k g2(u, Vu) — divoy(|Vo|) 3 f.

1. Construction of saddle point problem.

Define the auxiliary vectors p and A: p = Lu and A € g1(p) + d¢(p). Then the triple (u,p, \) satisfies
the system

g2(u,p) + L" X = f, g1(p) + Op(p) —A 20, Lu—p = 0.

We make an equivalent transformation of this system by multiplying the equation p — Lu = 0 by rLT, r =
const, and adding to the first inclusion. This results in the following saddle point problem:

rL"Lu—rL"p+ ga(u,p) + L" A = f, g1(p) + 0p(p) = A 50, Lu—p=0. (6)
Lemma 1. Let z = (u,p)T and

B rLT Lu —rLTp + go(u,p)
A = ( 91(p) )

Then it is strongly monotone if the parameter r is such that
0 <20 — kBacy —2v/ao <1 < 2a — kBacy + 2v/ao,

and problem (6) has a solution (u,p,\) with the unique components (u,p) (see [6]).
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Further we take for the definiteness r = 2a — kBacy .

1. Iterative solution method.
Consider the following method for problem (6):
,],,LTLuk-‘rl _ T,LTpk-‘rl 4 92(uk7pk+l) 4 LT}\/C _ f,

g1(p") + 00" = A 30, (7)
/\k+1 — /\k + T(karl _ LukJrl)

with an initial guess (u®, \?).
Theorem 1. Let r = 2a — kBacy. Then iterative method (7) converges for 0 < 17 <.

The proof follows from the properties of the operator A and general results on the convergence of Uzawa-type
iterative method from [6].
The implementation of method (7) consists of solving the inclusion

g1 (") + dp(p™) 3 A
and the system of linear equations
'I"LTLU]CJ’_l — f _|_ TLTpk+1 _ gQ(uk7pk+l) _ LTA]C

with symmetric and positive definite matrix »L” L. Owing to the block diagonal form of the operators g; and
O the inclusion is split up into non-coupled two-dimensional problems corresponding to current node of the
grid. Thus, method (7) is very easy to implement.

5. Numerical results.

We applied iterative method (7) to the finite difference schemes approximating variational inequality (2)
with several variants of differential operator and functional, namely:

Problem I g1(Vu) = {Vu if |Vu| < 1/2; \/% if [Vu| > 1/2}, g2(u, Vu) = k sinug—;, P(z) =
Ix(2) and f(z) =5.

Problem 2 Non-linear differential operator with g;(Vu) = {Vu if |Vu| < 1/2; \/% if |Vu| > 1/2},
g2(u, Vu) = kug—;l, ¥(z) =Ik(z) and f(z) =5.

Problem 3 Linear diffusion-convection operator P(u) = —Au + k:g—;l, Y(z) = Ix(z) and f(x) = 10.

Problem 4 Linear diffusion-convection operator P(u) = —Au + kﬂ, ¥(z) = I(z) and f(z) =

(91:1
C(8iyjr () — 6injo(x)), where 8,5, (z) is grid &-function, which equals =2 in z;,;, , z4,5, = (0.1,0.1)
and x;,;, = (0.9,0.9), C = const.

We controlled Lo -norm of the residual % = p* — Lu* in the iterative method (7) and used the stopping

criterion ||7%||z, = (h22(rfj)2)1/2 < 101 (see [4] on the stopping criterion for Uzawa-type iterative

]

methods).

Calculations were made for the grids with n ~ A=Y = 100, 300,500. The number of iterations N to
achieve fixed accuracy |[7¥||., < 0.01 is reported in table 1. It was found that N doesn’t depend on the grid
size n.

The typical pictures of the free boundaries for several problems are plotted in figures.
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Problem 1 | Convective coefficient | k=0 | k=1 | k=2
Number of iterations 13 16 24
Problem 2 | Convective coefficient | k=0 | k=1 | k=2
Number of iterations 13 16 28
Problem 3 | Convective coefficient | k=0 | k=1 | k=3
Number of iterations 26 37 41
Problem 4 | Convective coefficient | k=0 | k=1 | k=5
Number of iterations 9 11 13

Table. 1: Number N of iterations to achieve the accuracy |7V L,

coefficient k.

Fig. 1: Free boundary profile for problem 1 with right-hand side f(z) = 10; “black subdomain” corresponding
to |Vup| < 1 and “white subdomain” corresponding to |Vup| = 1; left picture in the case of no convection

k = 0 and right picture for k£ = 2.

Fig. 2: Free boundary profile for problem 4 in the case of no convection (k = 0) with “black subdomain”
corresponding to |Vuy,| = 0; left picture in the case C' = 5 and right picture for C' = 10.
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