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MULTIFRACTAL PARAMETRIZATION IN DIAGNOSIS OF LUNGS

DISEASES

Abstract. We consider the possibility of spatially asymmetric lungs

diseases diagnosis by means of X-ray images processing. The method

of multifractal parametrization is implemented. We adjust its parame-

ters and construct a number of classifiers (pathology/normal) using the

characteristics of multifractal spectrum.

1. Introduction

One cannot underestimate the problem of diseases detection and computer aided diagnosis.

Among all of the lungs diseases (pneumonia, tuberculosis, tumor, emphysema, cancer etc.) and

their diagnosis methods (fluorography, radiography, bronchography, lungs volume and contents

analysis, pulmonary function tests etc.), we have chosen the most prevalent symptoms: fibrosis

and infiltrations viewed on X-ray images.

Such diseases are usually marked by clustering of pocket spots and branching structure of

propagation. Therefore they present fractal subsets (self-similar, repeating themselves on a

number of scales) and in most cases are distributed with varying density, which let us study

them as multifractals. The features of multifractal are described numerically by its multifractal

(MF) spectrum — a set of dimensions of its fractal subsets.

In theory, by means of MF spectrum one should be able to distinguish the presence of

pathology with branching structure and estimate its heaviness. In practice however, the second-

rate accuracy when calculating MF spectrum (by box-counting method) and difficulties of its

analysis impede the task of classification. Certain success was made by different authors using

various MF techniques [1]–[5], mostly studying computed tomography (CT) scans.

In this paper we develop simple classifiers for detection of spatially asymmetric lungs diseases,

using a suitable set of MF spectrum characteristics for the task of image recognition and
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classification. We use fluorographic X-ray images which are way simpler to obtain than CT,

albeit rougher and contain less information.

In Section 2, basics of MF image parametrization are described, together with the certain

selected numerical values of this method.

In Section 3, the development of new classifiers is discussed. We present the results of

processing the training set of X-ray images and propose a set of metrics on images, involving

their MF spectrum. These metrics serve as descriptors that we use to construct some classifiers

for lungs pathologies. For each classifier we find its optimal parameters.

2. Multifractal approach to image processing

2.1. Multifractal formalism. Here we state briefly the basics of MF formalism (see fur-

ther [6]–[11]). Let M ⊂ L × L ⊂ R2, L > 0, be a non-empty compact subset of a plane. And

let µ be a finite measure supported on M . We divide this set M into a grid Gε of square cells

Mi, i ∈ N(Gε) ⊂ N, with linear size ε ∈ (0, L), and denote µi = µ(Mi).

We define general correlation function

χ(q) =
∑

i∈N(Gε)

µqi , q ∈ R,

and its exponent

(1) τ(q) = lim
ε→0

lnχ(q)

ln ε
, q ∈ R.

Indeed χ(q) ≈ ετ(q) whenever ε is small. We can consider the existence of limit in (1) as the

necessary property of multifractal.

Parameter q controls the contribution of areas with small and big measures into the sum

χ(q): when q � 1, the cells with relatively big values µi play the main role in this sum, and

when q � −1, the cells with smaller µi get important. Thus q is essentially a kind of scaling

factor (a ”lens”), which reveals the distribution properties of homogenous subsets in M .

Consider the following functions:

(2) α(q) =
d τ(q)

d q
, q ∈ R,

(3) f(q) = q
d τ(q)

d q
− τ(q), q ∈ R.

Equations (2)–(3) define parametrically a curve f = f(α) of fractal dimensions (f(α)-spectrum

and f(q)-spectrum). The value f(α) presents fractal dimension of the homogenous subset

Mα ⊂M with the same singularity index α of cell measures µi ≈ εα.

Its also useful to consider generalized Rényi dimensions :

Dq =
τ(q)

q − 1
=

1

q − 1
(qα(q)− f(q)), q ∈ R.
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By MF spectrum we denote f(α)-spectrum together with Rényi dimensions.

2.2. Multifractal parametrization. By means of some standardized procedure of X-ray pho-

tography followed by image preprocessing (see [12]), we have got a digital image: a matrix M

sized n × n, n ∈ N (in our case n = 512), with each element zpq ∈ M being a function of

color of the corresponding pixel of the X-ray. In our case zpq ∈ [0, 1] which corresponds to

gray scale (black color for dense structures (bones, blood vessels, and pathological formations),

white color for thinner matter (lungs and cavities in them)).

In order to find MF characteristics of digital image, we need to examine it on different scales,

dividing into the net Gk of cells with linear size lk ∈ scales ⊂ [1, n] ∩ N, k = 1, . . . ,m, m ∈ N.

The set of scales often defines the look of graphs we get. Besides, each scale is in charge for

those image details commensurable with this scale, letting us to pick out some specific scales

(in our case {4, 8, 16, 32, 64, 128}).
Knowing the color value zpq we can define the pixel measure µ0pq = zpq/

∑
zpq∈M

zpq and extend

it naturally to finite measure µ on subsets of M .

To each net cell Mi of size lk × lk we assign the measure

µik =
1∑

zpq∈M
zpq

∑
zpq∈Mi

zpq =
∑

zpq∈Mi

µ0pq,

the sum of color function over all pixels in this cell, normalized by the measure of the whole

set M .

For estimation of MF characteristics we need to know the values of α(q) and f(q), yet the

implementation of formula (3) for this is inconvenient. We will use the following trick (see [6]).

Consider a net Gε, ε > 0, and the quantities

Aε(q) =
∑

i∈N(Gε)

µqi lnµi
χ(q)

=

 ∑
i∈N(Gε)

µqi lnµi

 /
∑

i∈N(Gε)

µqi ,

Fε(q) =
∑

i∈N(Gε)

µqi ln
(

µqi
χ(q)

)
χ(q)

=

 ∑
i∈N(Gε)

µqi ln

 µqi∑
i∈N(Gε)

µqi


 /

∑
i∈N(Gε)

µqi .

Omitting the justification of passing to the limit, one can derive

(4) α(q) =
d τ(q)

d q
=

d
(

lim
ε→0

lnχ(q)
ln ε

)
d q

= lim
ε→0

1

ln ε

(
d lnχ(q)

d q

)
= lim

ε→0

1

ln ε

∑
i∈N(Gε)

µqi lnµi
χ(q)

=

lim
ε→0

Aε
ln ε

,
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D0 = f(q = 0) Fractal dimension of M = suppµ.

D1 = α(q = 1) Informational dimension of M .

D2 = 2α(q = 2)− f(q = 2) Correlation dimension of M .

D−∞ = Dq(qmin)

D+∞ = Dq(qmax)
The bigger are D−∞ and D+∞, the less dense is M .

K = D−∞ −D+∞ Describes the amplitude of singularity indices: the bigger is K, the

less homogeneous is M .

f−∞ = f(qmin) The bigger is f−∞, the more homogeneous is M . Corresponds to

fractal dimension of the most thin homogeneous subset in M .

f+∞ = f(qmax) The bigger is f+∞, the more homogeneous is M . Corresponds to

fractal dimension of the most dense homogeneous subset in M .

4∞ = D1 −D+∞ Points to the limit of inner symmetry violation, regarding MF

transformation of measure µi 7→ µqi
χ(q)

. Also points to the measure

of order in M , and the degree of equilibrium of its structure.

σerr −∞ = σerr(qmin)

σerr +∞ = σerr(qmax)
Mean squared errors when estimating f(qmin) and f(qmax).

Table 1. Informational content of MF characteristics (see [6]).

(5) f(q) = q
d τ(q)

d q
− τ(q) = q

d
(

lim
ε→0

lnχ(q)
ln ε

)
d q

− lim
ε→0

lnχ(q)

ln ε
= lim

ε→0

1

ln ε

(
q

d lnχ(q)

d q
− lnχ(q)

)
=

lim
ε→0

1

ln ε

q
∑

i∈N(Gε)

µqi lnµi −
∑

i∈N(Gε)

µqi lnχ(q)

χ(q)
= lim

ε→0

1

ln ε

∑
i∈N(Gε)

µqi (lnµ
q
i − lnχ(q))

χ(q)
= lim

ε→0

Fε
ln ε

,

and then the values α(q) = lim
ε→0

∂Aε

∂ ln ε
and f(q) = lim

ε→0

∂Fε

∂ ln ε
(L’Hospital rule) are obtained as

the slopes of linear regressions of the sets (ln ε, Aε) and (ln ε, Fε) correspondingly. Computa-

tions (4)–(5) are dependent on the quotient ε/L, so that at another scale ε′ = Kε, K > 0,

we have ∂ ln ε′ = ∂(ln ε + lnK) = ∂ ln ε, and α(q) and f(q) stay the same. Therefore in-

stead of ε we will use scales = {lk}mk=1 for linear approximations of points {(ln lk, Alk)}mk=1 and

{(ln lk, Flk)}mk=1, and take µi = µik for each lk ∈ scales.
Continuous spectrum of q ∈ R should also be sampled. We chose to take q ∈ Q =

{0,±1, . . . ,±70}, and then in each particular classifier we specialize it to a lesser subset

{q}qmax
q=qmin

⊂ Q.

It is customary to pick out several characteristics of f(q)-spectrum, those having understand-

able informational sense, see Table 1.
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Figure 1. Cutting out symmetrical square ROIs (lungs with pathology (left)

and normal (right)).

-60 -40 -20 20 40 60
q

0.1

0.2

0.3

0.4

0.5

σerr

Figure 2. Typical graph of mean squared error of regression when estimating f(q).

3. Data analysis and an approach to classification

In this paper, we restrain ourselves to diagnosis of horizontally asymmetrical pathologies of

lungs (with reference to spine on x-ray images), in which case one of the lungs is damaged more

than the other.

Our goal is to find suitable characteristics of MF spectrum and adjust the method of MF

parametrization, in order to diagnose asymmetrical pathology by a given pair of symmetrically

cut regions of interest (ROIs).

For this purpose, we use the training set of 55 pairs of ROIs with asymmetric pathologies

(the set P ) and 51 pairs of ROIs from healthy lungs (the set H) (see Fig. 1), and denote

corresponding statistical populations by P ′ ⊃ P and H ′ ⊃ H (the X-ray database of republic

clinical antitubercular health center, Tatarstan, Russia). We assume the presence of scanning

procedure generating admissible ROIs, which lay inside pulmonary fields (see [13] for spotting

the features on X-rays of lungs).



6 P. I. TROSHIN

Let Pill be a set of all ROIs with pathologies taken from the pairs in P , and (P ∪H)norm be

a set of ROIs without pathologies taken from the pairs in P and H.

We have chosen empirically the following values for MF parametrization:

• n× n = 512× 512 — pixel size of each ROI;

• scales = {4, 8, 16, 32, 64, 128} — pixel sizes of scales;

• Q = {−70,−69, . . . , 69, 70} — sample of the set R 3 q.
We can notice that the mean squared error σerr(q) of linear regression when estimating f(q)

at each q ∈ Q for every sample in Pill∪ (P ∪H)norm growths when |q| is large (see Fig. 2). Thus

the result of calculating f(q) (and α(q) as well) becomes less reliable. Therefore we will adjust

Q ⊂ {−70, . . . , 70} for each classifier in order to maximize the specificity (see further) of the

method.

To each image I ∈ Pill∪(P∪H)norm we can assign a set of its MF characteristics (see Table 1):

I 7→ (D0, D1, D2, D−∞, D+∞, K, f−∞, f+∞,4∞, σerr −∞, σerr +∞) .

Statistical properties of MF spectrum of ROIs in Pill ∪ (P ∪ H)norm are given in the Table 2

(left). We can derive, that D0 is nearly constant and can be excluded from our consideration.

Besides, the differences in values in Pill and in (P ∪H)norm are not big, which obstructs us to

use them for classification by one image (not by a pair).

Let I = (I ′, I ′′) ∈ P ∪ H be a pair of ROIs (the order is not important since we do not

know which side of lungs contains pathology). Consider the following set of metrics ds, s ∈
S = {1, . . . , 9}, (chosen from the bigger amount by maximal values of sensitivity and specificity

when changing Q ⊂ {−70, . . . , 70}):

d1 =
(
(D′1 −D′′1)2 + (D′2 −D′′2)2 + (D′−∞ −D′′−∞)2 + (D′+∞ −D′′+∞)2 + (K ′ −K ′′)2+

(f ′−∞ − f ′′−∞)2 + (f ′+∞ − f ′′+∞)2 + (4′∞ −4′′∞)2
)1/2

,

d2 = |D′1 −D′′1 |+ |D′2 −D′′2 |+ |D′−∞ −D′′−∞|+ |D′+∞ −D′′+∞|+ |K ′ −K ′′|+
|f ′−∞ − f ′′−∞|+ |f ′+∞ − f ′′+∞|+ |4′∞ −4′′∞|,

d3 =

√√√√ qmax s∑
q=qmin s

(D′q −D′′q )2/(qmax s − qmin s + 1),

d4 =

√√√√ qmax s∑
q=qmin s

(f ′(q)− f ′′(q))2/(qmax s − qmin s + 1),

d5 = |σ′err −∞ − σ′′err −∞|+ |σ′err +∞ − σ′′err +∞|,
d6 = |4′∞ −4′′∞|, d7 = |f ′+∞ − f ′′+∞|, d8 = |D′+∞ −D′′+∞|, d9 = |K ′ −K ′′|.

These metrics are new descriptors of the pairs I:

I = (I ′, I ′′) 7→ (d1 = d1(I
′, I ′′), . . . , d9 = d9(I

′, I ′′)).
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E σ

D0
Pill 2.147 0.000

(P ∪H)norm 2.147 0.000

D1
Pill 2.146 0.001

(P ∪H)norm 2.146 0.001

D2
Pill 2.144 0.002

(P ∪H)norm 2.144 0.002

D−∞
Pill 2.245 0.044

(P ∪H)norm 2.239 0.046

D+∞
Pill 2.119 0.013

(P ∪H)norm 2.126 0.007

K
Pill 0.126 0.050

(P ∪H)norm 0.113 0.050

f−∞
Pill 0.381 0.333

(P ∪H)norm 0.471 0.338

f+∞
Pill 1.343 0.314

(P ∪H)norm 1.570 0.227

4∞
Pill 0.028 0.013

(P ∪H)norm 0.021 0.007

σerr −∞
Pill 0.309 0.132

(P ∪H)norm 0.283 0.105

σerr +∞
Pill 0.205 0.113

(P ∪H)norm 0.175 0.116

E σ

d1
P 0.555 0.291

H 0.439 0.269

d2
P 0.783 0.378

H 0.597 0.327

d3
P 0.021 0.014

H 0.015 0.012

d4
P 0.327 0.164

H 0.270 0.158

d5
P 0.244 0.119

H 0.172 0.123

d6
P 0.015 0.012

H 0.004 0.003

d7
P 0.400 0.285

H 0.193 0.151

d8
P 0.015 0.012

H 0.004 0.003

d9
P 0.039 0.029

H 0.026 0.021

Table 2. Statistics for MF characteristics (left) and for metrics involving them

(right). Here E is a mean value over the corresponding sample, and σ is a standard

deviation.

Let Cs = [minI∈P∪H ds(I),maxI∈P∪H ds(I)] ⊂ R be a range of values of descriptor ds, s ∈ S.

We can notice from the statistical properties of given metrics (see Table 2, right) that the

descriptors of healthy pairs are slightly smaller and stay closer to 0 than those of pairs with

pathologies. This justifies using a simple classifier by two areas.

We consider the simplest 2-dimensional classifier with parameters s = (s1, s2) ∈ S =

{(s1, s2) | s1, s2 ∈ {1, . . . , 9}, s1 < s2} and c = (c1, c2) ∈ Cs = Cs1 × Cs2 :

(6) I ∈ P ′ ∪H ′ 7→

{
P ′, if ds1 ≥ c1 or ds2 ≥ c2 (classified as pathology),

H ′, if ds1 < c1 and ds2 < c2 (classified as normal).

As an additional parameter we will use the set Qs = {q}qmax s
q=qmin s

⊂ Q, used for estimation of MF

spectrum, with possibility to vary qmin s and qmax s to obtain the best results.

We need two indices of effectiveness for our classification method, sensitivity (true positive

rate) and specificity (true negative rate):
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(ds1 , ds2) (d6, d1) (d2, d3) (d7, d6) (d1, d3) (d8, d7)

Qs {-6,. . . ,70} {0,. . . ,70} {-42,. . . ,46} {0,. . . ,70} {-50,. . . ,70}
Cs (0.005,0.378) (0.312,0.005) (0.144,0.006) (0.293,0.005) (0.005,0.381)

SNSs 0.909 0.909 0.909 0.909 0.909

SPCs 0.804 0.784 0.765 0.765 0.765

(ds1 , ds2) (d8, d5) (d8, d4) (d9, d4) (d7, d3) (d6, d5)

Qs {-50,. . . ,42} {-6,. . . ,70} {-2,. . . ,46} {-10,. . . ,34} {-42,. . . ,34}
Cs (0.005,0.248) (0.005,0.171) (0.005,0.167) (0.105,0.005) (0.005,0.223)

SNSs 0.909 0.909 0.909 0.909 0.909

SPCs 0.745 0.745 0.725 0.706 0.706

Table 3. Best 2-dimensional linear classifiers.

SNS =
#{I ∈ P | I classified as belonging to P}

#(P )
,

SPC =
#{I ∈ H | I classified as belonging to H}

#(H)
,

where #(·) is a cardinality of a set. In case of classifier (6), for s ∈ S, c ∈ Cs it turns to be

SNSs(c) =
#{I ∈ P | ds1 ≥ c1 or ds2 ≥ c2}

#(P )
,

SPCs(c) =
#{I ∈ H | ds1 < c1 and ds2 < c2}

#(H)
.

Since in mass fluorographic (screening) examination, pulmonary diseases are relatively rarely

detected (4 patients in 1000), we set high value of γ = 0.9 as the lower limit of sensitivity and

search for classifiers with maximal specificity.

In order to find the most effective pairs of metrics (ds1 , ds2) we solved numerically the following

task:

(7) ŝ = arg max
s∈S

max
Qs⊂Q

max
c∈Cs

{SPCs(c) | SNSs(c) ≥ γ}.

Result. In the Table 3 we present 10 best solutions (classifiers (6)) to the problem (7). And on

the Fig. 3 we depict the best classification rule (d6, d1) with parameters Q(6,1) = {−6, . . . , 70},
C(6,1) = (0.005, 0.378) and efficiency indices SNS(6,1) = 0.909, SPC(6,1) = 0.804 (red points for

samples from I ∈ P , and blue ones for I ∈ H).

Existence of outliers in training set is mostly due to irregularity of X-ray image exposure,

and image asymmetry caused by the body structure and ineffectual angle of projection.

As it turned up, solutions to the problem (7) for 1- and 3-dimensional classifiers give worse

results (SPCs < 0.72).
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SNS=0.909

SPC=0.804
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Figure 3. Best classifier with descriptors (d6, d1).

4. Conclusion and acknowledgements

Binary classification method (pathology/normal) proposed here on practice can be combined

with another image recognition methods. We have confirmed the hypothesis of possibility to

use MF characteristics for the given problem of classification.

Effectively analogous classifiers one can obtain from metrics ds, using the relevant vector

machine method to separate areas on the graphs like Fig. 3. It is also interesting to implement

Mahalanobis distance for this purpose.

Often, pathological structure in lungs has multifractal properties. The existence of pathology

should come out in multifractal spectrum of the X-ray image. Here we have studied diagnosis

by a pair of symmetrically cut ROIs, and we leave the question of analogous classification by a

single ROI for further research.

The author expresses his gratitude to R. Kuleev for the handy consultation and inspiring

advices. The work has been supported by the Russian Ministry of education and science

(agreement: 14.606.21.0002, ID: RFMEFI60614X0002).
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