Федеральное агентство по образованию

Казанский государственный финансово-экономический институт

Кафедра статистики и эконометрики

ПРОГРАММНЫЕ СРЕДСТВА СТАТИСТИЧЕСКОГО АНАЛИЗА

Учебное пособие для студентов, обучающихся по направлениям 521500 «Менеджмент» и 521600 «Экономика»

Казань 2005

Утверждено на заседании кафедры статистики и эконометрики 22.02.05 г., протокол № 7.

Автор: доц. Кадочникова Е. И. Рецензенты: доц. Кундакчян Р. М., доц. Костина Л. В.

Учебное пособие «Программные средства статистического анализа» посвящено обучению навыкам статистического анализа экономической информации на персональном компьютере. Пособие ориентировано на студентов, знакомых с общей теорией статистики и призвано помочь применять методы статистического анализа в экономических исследованиях, при решении расчетноаналитических заданий, выполнении курсовых и выпускных квалификационных работ. Пособие состоит из двух частей. В первой части изложена технология работы с программной надстройкой «Пакет анализа» и встроенными статистическими функциями в Microsoft Excel, во второй части - возможности системы Statistica (версия 5.5) в разделах описательной статистики и анализа взаимосвязей. В соответствии с рабочей программой дисциплин «Статистика» и «Эконометрика» в пособии рассмотрены функции для вычисления средних величин, показателей вариации, корреляции, динамики; возможности построения статистических графиков, проведения дисперсионного анализа, регрессионного анализа и анализа временных рядов.

Содержание Часть 1. Статистический анализ данных в MS EXCEL	стр. 4
 Описательная статистика 1.1.Стандартные статистические функции 1.2 Надстройка «Пакет анализа» 	4
 Дисперсионный анализ 1 Стандартные статистические функции 	15
2.2. Надстройка «Пакет анализа»	16
 Статистические методы изучения взаимосвязей 1.Стандартные статистические функции 2. Надстройка «Пакет анализа» 	21 25
 Методы анализа временных рядов 1.Стандартные статистические функции 4.2. Надстройка «Пакет анализа» 	30 31
Часть 2. Статистический анализ данных в системе STATISTICA	35
 Организация хранения и обработки данных Первичный анализ данных Графические возможности системы STATISTICA Регрессионный анализ Непараметрическая статистика Анализ временных рядов и прогнозирование 	36 40 44 48 55 58
Список литературы	65

Часть 1. Статистический анализ данных в MS Excel

Для статистической обработки информации в MS Excel имеется библиотека из 78 статистических функций и программная надстройка «Пакет анализа». Ниже будут рассмотрены их возможности отдельно по разделам теории статистики: описательная статистика, дисперсионный анализ, статистические методы изучения взаимосвязи, временные ряды.

1. ОПИСАТЕЛЬНАЯ СТАТИСТИКА

1.1.Стандартные статистические функции

Работать со статистическими функциями MS Excel удобнее с помощью Мастера функций (меню *Вставка/Функция*/категория Статистические). В нем имеются следующие функции описательной статистики: СРЗНАЧ, СРГАРМ, СРГЕОМ, МЕДИАНА, МОДА, КВАРТИЛЬ, ПЕРСЕНТИЛЬ, СТАНДОТКЛОН, ДИСП, КВАДРОТКЛ, СРОТКЛ, СТАНДОТКЛОНА, СТАНДОТКЛОНП, ЭКС-ЦЕСС, СКОС, МИН, МИНА, МАКС, МАКСА, НАИБОЛЬШИЙ, НАИМЕНЬ-ШИЙ (см. рис. 1.1.1.).

Рисунок 1.1.1. Диалоговое окно мастера функций

Остановимся на некоторых из них. **Функция СРЗНАЧ** рассчитывает значение невзвешенной средней арифметической.

Синтаксис: СРЗНАЧ (число1; число 2...).

Рассмотрим использование функции **СРЗНАЧ** для расчета численности экономически активного населения РФ в среднем за месяц (см. рис. 1.1.2).

Численность экономически активного населения в РФ, млн. чел.

	Янв.	Фев.	Март	Апр.	Май	Июнь	Июль	Авг.	Сент.	Окт.	Ноя.	Дек.
2002	71	71	71,2	71,3	71,5	71,9	72,3	72,7	72,4	72,1	71,9	71,5
2003	71,1	70,7	70,9	71,1	71,3	71,7	72	72,3				

Источник: <u>www.gks.ru</u>

CP3ł	нач 🚬	X 🗸 =	=СРЗНАЧ	(B1:B20)									
S K	(нига1										_		
	A	В	С	D	E	F	G	Н		J	K		
1	январь	71											
2	февраль	71											
3	март	71,2											
4	апрель	71,3											
5	май	71,5	г-СРЗНАЧ										
6	июнь	71,9		Число1 31;520									
7	июль	72,3											
8	август	72,7		Число2									
9	сентябрь	72,4	<u> </u>	71 505									
10	октябрь	72,1	Возвращае	т среднее (а	рифметическ	сое) своих ар	гументов, к	оторые могу:	т быть числа	оэо МИ ИЛИ ИМЕН;	ами.		
11	ноябрь	71,9	массивами	или ссылкам	и на ячейки с	числами.	. ,,				,		
12	декабрь	71,5											
13	январь	71,1			Число1:	число1;число	o2; от 1 де	о 30 аргумен:	гов, для кот	орых вычисл	яется		
14	февраль	70,7				среднее.							
15	март	70,9											
16	апрель	71,1	2		3	начение:71.	595		ОК	Отм	ена		
17	май	71,3											
18	июнь	71,7											
19	июль	72											
20	август	72,3											
21	в среднем	31:B20)											

Рисунок 1.1.2. Диалоговое окно функции СРЗНАЧ

Ячейка B21 содержит формулу=СРЗНАЧ(B1:B20), по которой рассчитывается средняя за месяц численность экономически активного населения.

Функции для расчета средней арифметической взвешенной в MS Excel нет, поэтому результат функции СУММПРОИЗВ делят на результат функции СУММ.

Функция МЕДИАНА рассчитывает медиану (серединное значение) дискретных данных, при этом ранжирование данных выполняется автоматически.

Синтаксис: МЕДИАНА (число1; число2;...)

B1	8 💌 = =МЕД	ИАНА(В4:В1	7)		
🔡 K	нига1				
	A	В	С	D	E
1	Численность постоянного н	аселения в			
2	Приволжском федеральном	и округе, тыс	. чел.		
3					
4	Республика Башкортостан	4102,9			
5	Республика Марий Эл	728			
6	Республика Мордовия	888,7			
7	Республика Татарстан	3779,8			
8	Удмуртская Республика	1570,5			
9	Чувашская Республика	1313,9			
10	Кировская область	1503,6			
11	Нижегородская область	3524			
12	Оренбургская область	2177,5			
13	Пензенская область	1453,4			
14	Пермская область	2824,4			
15	Самарская область	3239,8			
16	Саратовская область	2669,3			
17	Ульяновская область	1382,3			
18	Медиана	1874			
		I T	-		

Рисунок 1.1.3. Результат функции МЕДИАНА (источник:www.gks.ru).

В ячейке B18 помещена формула =МЕДИАНА(B4:B17), она определила значение 1874. (см. рис. 1.1.3)

Расчет медианы по интервальным рядам требует проведения определенных расчетов (см. рис. 1.1.4):

ячейка B8: формула =СУММ (B3:B7);

ячейка В9: формула =В8/2 (50% поселений);

ячейка В10: формула =ПОИСКПОЗ(В9;С3:С7;1)- в массиве С3:С7 опре-

деляется номер позиции числа, которое является наибольшим среди чисел,

меньших или равных середины интервала, т. е. числа 1540,5;

ячейка В11: формула =ИНДЕКС(C3:C7;B10;1) – из массива C3:C7 извлекается число, удовлетворяющее условиям поиска, сформированным в ячейке В10;

ячейка B12: формула = ЕСЛИ(B9=B11;B10;B10+1)- рассчитывается смещение на медианный интервал;

ячейка В13: формула = ИНДЕКС(С3:С7;В12;1) – отображается частота медианного интервала;

ячейка В14: формула = ИНДЕКС(А3:А7;В12;1) – указан медианный интервал; ячейка B15: формула =ЛЕВСИМВ(B14;1) – отражается нижняя граница медианного интервала;

ячейка B16: формула =ИНДЕКС(C3:C7;B12-1;1) – отражается накопленная частота интервала, предшествующего медианному;

ячейка B17: формула = 101+49*((B9-B16)/B13) – рассчитывается меди-

анная численность населения, проживающего в сельских поселениях.

B1	7 💌 = =101	+49*((B9-B	16)/B13)		
😭 K	нига1				
	А	В	С	D	
1	Группировка сельских по	селений			
2	Республики Татарстан				
3	без населения	35	35		
4	до 10 человек	201	236		
5	"11-50	407	643		
6	51-100	407	1050		
7	101 и более	2031	3081		
8	Итого	3081			
9	50% поселений	1540,5			
10	смещение на max <n 2<="" td=""><td>4</td><td></td><td></td><td></td></n>	4			
11	значение max <n 2<="" td=""><td>1050</td><td></td><td></td><td></td></n>	1050			
12	смещение на медианный	5			
13	Частота мед.	3081			
14	Медианный интервал	101 и боле	e		
15	Нижняя граница	1			
16	Накопленная частота	1050			
17	Медиана населения	108,8009			
18					

Рисунок 1.1.4. Расчет медианы интервального ряда

= = МОДА(ВЗ:В16)

B17

1 1 1	1етодпк		
	A	В	С
1	Величина прожиточного мин	имума	
2	за 2 квартал 2003 года, рубл	тей	
3	Республика Башкортостан	1775	
4	Республика Марий Эл	1785	
5	Республика Мордовия	1851	
6	Республика Татарстан	1803	
7	Удмуртская Республика	2004	
8	Чувашская Республика	1760	
9	Кировская область	1968	
10	Нижегородская область	2041	
11	Оренбургская область	1880	
12	Пензенская область	1824	
13	Пермская область	2163	
14	Самарская область	2248	
15	Саратовская область	1968	
16	Ульяновская область	1857	
17	Мода	1968	
1 10			

Рисунок 1.1.5. Результат функции МОДА (источник:www.gks.ru)

Функция МОДА рассчитывает моду дискретных данных.

Синтаксис: МОДА (число1; число2;...)

Ячейка В17 содержит формулу МОДА (В3:В16) (см. рис. 1.1.5).

Мода интервального ряда в MS Excel автоматически не определяется. Поэтому требуется записывать вручную ряд формул.

1.2. Надстройка «Пакет анализа»

С помощью данной надстройки (меню *Сервис/Анализ данных*/Пакет анализа) можно определить показатели описательной статистики, ранг и персентиль, построить гистограмму, выполнить выборку.

Режим «*Гистограмма*» позволяет построить дискретный ряд сгруппированных данных и представить их графически на диаграмме Парето. В данном режиме имеются следующие элементы управления:

1. Поле *Входной интервал* – вводится ссылка на ячейки, содержащие анализируемые данные.

2. Флажок *Метки* устанавливается в активное состояние, если первая строка (столбец) во входном диапазоне содержит заголовки.

3. Поле Интервал карманов (необязательное). Введите в поле ссылку на ячейки, в которых заданы границы интервалов группировки (карманов) в возрастающем порядке. Например, карману со значением 1000 будет соответствовать частота данных, меньших, чем 1000, но больших, чем предшествующий карман.. Если диапазон карманов не был введен, то набор отрезков, равномерно распределенных между минимальным и максимальным значениями данных, будет создан автоматически.

4. Поле *Парето* (отсортированная диаграмма). Флажок позволяет представить данные в порядке убывания частоты. Поле Интегральный процент. Флажок включает в гистограмму график кумулятивных процентов.

5. Поле *Вывод графика*. Флажок позволяет автоматически создать встроенную диаграмму на листе, содержащем выходной диапазон.

Рассмотрим построение диаграммы Парето по данным о численности постоянного населения (см. рис. 1.2.1).

Численность постоянного населения, тыс. чел.

(по данным переписи 2002 г.)

Субъект РФ	Численность	Интервал
		(карман)
Республика Башкортостан	4102,9	1000
Марий Эл	728	2000
Республика Мордовия	888,7	2500
Республика Татарстан	3779,8	3000
Удмуртская республика	1570,5	3500
Чувашская республика	1313,9	4000
Кировская область	1503,6	4500
Нижегородская область	3524	
Оренбургская область	2177,5	
Пензенская область	1453,4	
Пермская область	2824,4	
Самарская область	3239,8	
Саратовская область	2669,3	
Ульяновская область	1382,3	

Источник: <u>www.gks.ru</u>

Рисунок 1.2.1. Диалоговое окно режима Гистограмма

В нижеследующей таблице представлен дискретный ряд территорий, сгруппированных по численности населения. Очевидно, что численность населения менее 1000 тыс. человек имеют 2 субъекта (Марий Эл и Республика Мордовия), в них сосредоточено 14,29% населения округа. От 1000 до 2000 тыс. человек постоянного населения имеют 5 субъектов (35,7% населения округа). Две первые группы включают в себя 50% всего населения Приволжского административного округа.

Карман	Частота	Интегральный %	Карман	Частота	Интегральный %
1000	2	14,29%	2000	5	35,71%
2000	5	50,00%	1000	2	50,00%
2500	1	57,14%	3000	2	64,29%
3000	2	71,43%	4000	2	78,57%
3500	1	78,57%	2500	1	85,71%
4000	2	92,86%	3500	1	92,86%
4500	1	100,00%	4500	1	100,00%
Еще	0	100,00%	Еще	0	100,00%

Высота столбика на гистограмме показывает частоту каждой группы субъектов. В Приволжском административном округе преобладают субъекты с населением от 1000 до 2000 тыс. человек. Линия отражает кумулятивный процент численности населения. Например, в трех первых группах субъектов проживает 57,1 % населения округа.

Рисунок 1.2.2. Диаграмма Парето для субъектов РФ по численности постоянного населения.

Режим «*Выборка*» позволяет формировать выборку из генеральной совокупности на основе схемы повторного собственно-случайного отбора, а также из периодических данных. Диалоговое окно режима «Выборка» содержит элемент управления «Метод выборки» (см. рис. 1.2.3). В положении «Периодический» в поле «Период» указывают размер периодического интервала выборки. В положении «Случайный» в поле «Число выборок» указывают объем выборки.

Например, студклуб проводил среди студентов лотерею по распространению билетов на вечер КВН. Список 200 студентов размещен на рабочем листе Excel. Необходимо отобрать 10 студентов.

	A	В	С	D	E	F	G	Н				
	Номер в											
1	списке	Ф. И. О., № студ. билета										
2	1	03эо001 Антонова	Выборка					?	x 1			
3	2	ОЗэоОО2 Бабин	Входные	ланные					21			
4	(3)	ОЗроООЗ Галиева	Входной	интервали	1000	2,484200		OK	16			
5	4	ОЗэоОО4 Гарипова		ппородл	1:222:	2.949200		Отмена	3			
6	5	03эо005 Гималтдинова	<u> </u>	1				Отмена	6			
7	6	ОЗэоОО6 Домрачева	-Метод вы	борки				<u>С</u> правка	15			
8	7	ОЗэоОО7 Замалтдинова	0.0	С Периодический								
9	8	ОЗроОО8 Исляева	Перис									
10	9	ОЗэоОО9 Кадыров	Пери	од:					19			
11	10	03эо010 Калямшина	🖲 Случа	айный					27			
12	[11]	ОЗэоО11 Комолдинова	Uuene		10		-					
13	12	ОЗэоО12 Крайнов	HICH	высорок.	110							
14	13	ОЗэоО13 Кудряшов	Параметр	ы вывода-								
15	14	03эо015 Миннуллина	C Buixo			2						
16	15	ОЗэоО16 Митяева	0 0 <u>01</u> X0,	апои интеры	JI. <u>1744</u>	-						
17	16	ОЗэоО74 Набиуллина	О Новы	й рабочий <u>л</u> и	іст:							
18	17	ОЗэоО17 Наседкина	С Новая	я рабочая <u>к</u> н	ига							
19	18	ОЗэоО18 Погодина										
20	[19]	ОЗэоО19 Салмин										

Рисунок 1.2.3. Диалоговое окно режима «Выборка».

Номера, которые оказались выигрышными, указаны в столбце I, студент с номером 27 выиграл 2 билета.

В режиме «Описательная статистика» выполняется расчет основных показателей положения (средняя арифметическая выборки, средняя ошибка выборки, медиана, мода, размах вариации, минимальный и максимальный элементы выборки), разброса (оценка среднего квадратического отклонения и дисперсии по выборке) и асимметрии (оценка эксцесса и коэффициента асимметрии) по выборочной совокупности. Для вывода указанных показателей надо активизировать элемент управления «Итоговая статистика». Элемент управления «Уровень надежности», установленный в активное состояние, позволяет рассчитать предельную ошибку выборки для требуемой доверительной вероятности (обычно 95%). Элемент управления «К-й наибольший» в активном состоянии включает в выходную таблицу k-е наибольшие значения (начиная с максимального элемента выборки). Если k=1, то строка будет содержать только максимальное значение элемента выборки. Аналогично назначение элемента управления «К-й наименьший» (см. рис. 1.2.4.).

	A	В	С	D	E	F	G	Н	
1	Экспорт услу	г РФ в стра	ны ЕС в 4	квартале	2002 года,	тыс. долл.	США		
2	Австрия	52461	Описате	льная ста	гистика			?	×
3	Бельгия	20159	-Вуодны	е ланные —					
4	Великобр.	241282	Входны	с дагнос й интервали				OK	
5	Германия	246425	В <u>х</u> одно	и интервал;	198	\$ Z; \$ Б\$16		OTHOUS	i l
6	Греция	13261	Группи	рование:	۲	по стол <u>б</u> цам		Отмена	J
7	Дания	54178				Справка	1		
8	Ирландия	21318	🗌 🖂 Мет	ки в первой	строке				1
9	Испания	16276							
10	Италия	44171	-Парамет	гоы вывода-					
11	Люксембург	3361	0.0	· · · · ·	Г				
12	Нидерланды	53073	<u> С Вы</u> х	однои интер	вал: ј				
13	Португалия	2898	🕘 Нові	ый рабочий į	<u>п</u> ист:				
14	Финляндия	161010	О Нова	ая рабочая <u>к</u>	нига				
15	Франция	104971							
16	Швеция	35280	- I♥ <u>M</u> TOI	овая статис	тика				
17			Т ∣ И Урон	вень надежн	юсти:	95 1	/0		
18			🛛 🔽 К-ый	і <u>н</u> аименьши	й: 1				
19			🔽 К-ый	і наибольши	й: 1				
20									
21									
22									
• •	🕨 🕅 Лист1 /	(Лист2 / Лис	тб)Лист8	(Лист7 (Л	Пист5 🖌 Лист	4 / Лист3 /	•		

Рисунок 1.2.4. Диалоговое окно режима «Описательная статистика»

Источник: <u>www.cbr.ru</u>

Основные показатели описательной статистики приведены ниже.

Столоеці								
Среднее	71342							
Ореднее	20995							
Мелиана	44171							
Мода	#Н/Д							
Стандартное отклонение (среднее квадратическое отклонение)	81312							
Дисперсия выборки	6611590524							
Эксцесс	1							
Асимметричность	1							
Интервал (размах вариации)	243527							
Минимум	2898							
Максимум	246425							
Сумма	1070124							
Счет (объем выборки)	15							
Наибольший(1)	246425							
Наименьший(1)	2898							
Уровень надежности(95,0%)	45029							

На основании данной таблицы (по показателям средней арифметической выборки и предельной ошибки выборки) с уровнем надежности 95% можно предположить, что средний размер экспорта услуг РФ в страны ЕС в 4 квартале 2002 года находился в пределах от 26313 тыс. долл. (71342-45029) до 116371 тыс. долл. (71342+45029).

Коэффициент вариации, равный 114% свидетельствует о сильной колеблемости экспорта услуг в выборке. Ненадежность средней подтверждается и ее значительным отклонением от медианы выборки. Значения коэффициентов асимметрии и эксцесса, равные 1, свидетельствуют, что данное распределение имеет правостороннюю асимметрию и характеризуется скоплением членов ряда в центре распределения.

Режим «*Ранг и персентиль*» служит для генерации таблицы, содержащей порядковые и процентные ранги для каждого значения из набора данных, при этом данные упорядочиваются в порядке убывания (см. рис. 1.2.5). Ранг (R) определяет номер (порядковое место) значения случайной величины в наборе данных. Персентиль (Ti) показывает процентный ранг для каждого значения:

$$T_i = \frac{(n - R_i - (k_i - 1))}{n - 1} * 100$$

n – количество данных в наборе;

Ri_- ранг i-го числа, рассчитанный при условии упорядочения данных по убыванию;

k_i - количество повторяющихся значений i-го числа в наборе данных.

Ранги находят практическое применение в непараметрических методах оценки взаимосвязи. Например, определим коэффициент Спирмена, используя режим «Ранг и Персентиль». Коэффициент Спирмена вычислим по формуле:

$$\rho = 1 - \frac{6 \cdot \sum_{i=1}^{n} d_i^2}{n \cdot (n^2 - 1)} = 1 - \frac{6 \cdot 90}{15 \cdot (15^2 - 1)} = 0,84$$

Значение коэффициента Спирмена, равное 84%, свидетельствует о сильной связи между экспортом и импортом услуг.

	A	В	С	D	E	F	G		Н		J	
1	Услуги РФ и і	стра	н ЕС в 4 кі	вартале 200)2 года, т	ыс. долл. С	ША					
2			экспорт	импорт	D						0	
3	Австрия		52461	72846	Ранг и	персентиль					<u> </u>	Ľ
4	Бельгия		20159	32162	Входнь	ые данные		_			OK	1
5	Великобр.		241282	345111	В <u>х</u> одне	ой интервал:		 \$⊂		1		
6	Германия		246425	398992	Eovon	Гоуппирование:			по столбцам		Отмена	
7	Греция		13261	41382	1 27188	population		0	по строкам		C	1
8	Дания		54178	29688		×			по строкам		<u>С</u> правка	l I
9	Ирландия		21318	21493		тки в первои с	троке					
10	Испания		16276	44802	- Параме	тры вывода-						
11	Италия		44171	100719	C Ber	Уолной интеря	ean:					
12	Люксембург		3361	1326			5071.	i-				
13	Нидерланды		53073	84237	9 Hoe	зый рабочий <u>л</u>	ист:	L.,				
14	Португалия		2898	3705	C Hos	зая рабочая <u>к</u> і	нига					
15	Финляндия		161010	390285								
16	Франция		104971	141191								
17	Швеция		35280	55499								
18												

Рисунок 1.2.5. Диалоговое окно режима «Ранг и персентиль».

Результаты выполнения данного режима приведены ниже.

Точка	экспорт	Ранг	Процент	Точка	импорт	Ранг	Процент
4	246425	1	100,00%	4	398992	1	100,00%
3	241282	2	92,80%	13	390285	2	92,80%
13	161010	3	85,70%	3	345111	3	85,70%
14	104971	4	78,50%	14	141191	4	78,50%
6	54178	5	71,40%	9	100719	5	71,40%
11	53073	6	64,20%	11	84237	6	64,20%
1	52461	7	57,10%	1	72846	7	57,10%
9	44171	8	50,00%	15	55499	8	50,00%
15	35280	9	42,80%	8	44802	9	42,80%
7	21318	10	35,70%	5	41382	10	35,70%
2	20159	11	28,50%	2	32162	11	28,50%
8	16276	12	21,40%	6	29688	12	21,40%
5	13261	13	14,20%	7	21493	13	14,20%
10	3361	14	7,10%	12	3705	14	7,10%
12	2898	15	,00%	10	1326	15	,00%

	Экспорт,Х	Импорт, Ү	ранг Х	ранг Ү	(Rx-Ry)^2
1	2	3	4	5	6
Австрия	52461	72846	7	7	0
Бельгия	20159	32162	11	11	0
Великобр.	241282	345111	2	3	1
Германия	246425	398992	1	1	0
Греция	13261	41382	13	10	9
Дания	54178	29688	5	12	49
Ирландия	21318	21493	10	13	9

1	2	3	4	5	6
Испания	16276	44802	12	9	9
Италия	44171	100719	8	5	9
Люксембург	3361	1326	14	15	1
Нидерланды	53073	84237	6	6	0
Португалия	2898	3705	15	14	1
Финляндия	161010	390285	3	2	1
Франция	104971	141191	4	4	0
Швеция	35280	55499	9	8	1
				Сумма	90

2. ДИСПЕРСИОННЫЙ АНАЛИЗ

2.1.Стандартные статистические функции

Рассмотрим основные стандартные статистические функции.

Функция ДИСП оценивает несмещенную дисперсию по выборке данных по формуле:

 $\sigma^{2} = \frac{\sum (x_{i} - \bar{x})^{2}}{n-1}$ Синтаксис: СТАНДОТКЛОН (число1; число2;...).

Функция СТАНДОТКЛОН оценивает стандартное отклонение по выборке данных по формуле:

 $\sigma = \sqrt{\frac{\sum (x_i - x)^2}{n - 1}}$ Синтаксис: ДИСП (число1; число2;...) (См. рис. 2.1.1).

Функция КВАДРОТКЛ рассчитывает сумму квадратов отклонений точек данных от их средней арифметической:

 $\sum (x_i - \bar{x})^2$ Синтаксис: КВАДРОТКЛ (число 1; число 2; ...) ндотклон 🔄 🗙 🗸 = =СТАНДОТКЛОН(В2:В19)

2 1	Іетодпк								- 🗆 ×
	A	В	С	D	E	F	G	Н	
	ВВП на душу по паритету								
	покупательной способности								
1	в 1999 году, долл. США								
2	Россия	6067		дисперсия	105080505,6				
3	Австралия	24716	стандартн	ое отклонение	DH(B2:B19)				
4	Австрия	25697							
5	Бельгия	24672	_Г СТАНДОТК	лон					
6	Болгария	6263	Число1 32(619						
7	Великобритания	23312	lburn?						
8	Германия	24601						=	число
9	Греция	15808						=	10250,878
10	Дания	28030	Оценивает	стандартное отн	клонение по выбор	же. Логичес	кие значения	я или текст і	игнорирун
11	Израиль	19955							
12	Канада	26443							
13	Корея	13647		·	нисло1: число1;чи	сло2; от 1	до 30 числої	вых аргумен	HTOB,
14	Литва	7595			COOLBELCI	ругощих рыс	зорке из гене	эральной сог	BOKYTHOUT
15	Люксембург	43036							
16	США	33725	2		Значение: 1	10250,87829			DK
17	Турция	5966							
18	Франция	23068							
19	Швейцария	28778							
20									-

Рисунок 2.1.1. Диалоговое окно функции СТАНДОТКЛОН

2.2. Надстройка «Пакет анализа»

В режиме «Однофакторный дисперсионный анализ» выполняется раз-

ложение общей выборочной дисперсии на сумму дисперсии групповых средних и средней из групповых дисперсий (см. рис. 2.2.1).

	Α	В	C	D	
1	Продолжитель	ность телеф	онных звонков		
2	Информация	Продажи	Обслуживание	Остальные	1
3	0,6	5,1	5,2	6,3;	1
4	1,1	1,7	2,9	1,2;	
5	1	4,4	2,6	3,1	
6	1,9	26,6	1,2	2,5	
7	3,8	7,4	7	3	
8	1,6	1,4	14,2	2,6	l
9	0,4	7	8,4	0,8	1
10			1		
11	Однофакторны	ий дисперси	онный анализ	<u> </u>	×
12	Входные данны	ole			
13	В <u>х</u> одной интер	вал:	\$A\$2:\$D\$9		
14	Группировании	- .	По стоябнам	Отмена	
15	труппировани		С по стол <u>о</u> цам		
16	—		• по строкам		
17	метки в пе	рвои строке			
18	<u>А</u> льфа: 0,05				
19					
20	Параметры вы				
21	С В <u>ы</u> ходной і	интервал:		<u></u>	
	💿 Новый раб	очий <u>л</u> ист:			τ
ките	С Новая рабо		F		

Рисунок 2.2.1. Диалоговое окно режима «Однофакторный дисперсионный анализ» В диалоговом окне данного режима задаются следующие параметры: входной интервал; группирование; метки в первой строке; альфа – вводится уровень значимости α, равный вероятности возникновения ошибки первого рода (вероятности отвергнуть нулевую гипотезу); выходной интервал.

Например, для лучшего распределения рабочего времени зафиксирована продолжительность телефонных звонков по определенным темам.

Результаты выполнения режима содержатся в таблице однофакторного дисперсионного анализа.

Однофакторный дисперсионный анализ

ИТОГИ

Группы	Счет	Сумма	Среднее	Дисперсия
Информация	7	10,4	1,48	1,31
Продажи	7	53,6	7,65	75,18
Обслуживание	7	41,5	5,92	19,80
Остальные	7	19,5	2,78	3,17

Дисперсионный анализ

Источник вариа- SS		Df	MS	F	P-	F критиче-	
ции					Значение	ское	
Между группами	168,19	3	56,06	2,25	0,10	3,008786109	
Внутри групп	596,88	24	24,87				
Итого	765,08	27					

Из таблицы очевидно, что наибольшей средней продолжительностью (7,65 минут) и вариацией времени разговора (коэффициент вариации, равный 113%) обладают звонки по продажам.

Показатель SS *между группами* содержит взвешенную сумму квадратов отклонений групповых средних от общей выборочной средней. Показатель SS *внутри групп* содержит остаточную сумму квадратов отклонений наблюдаемых значений уровня от своей выборочной средней. Показатель SS *итого* содержит общую сумму квадратов отклонений наблюдаемых значений от общей выборочной средней. Показатель MS *между группами* содержит оценку межгруппо-

вой (факторной) дисперсии. Показатель MS *внутри групп* содержит оценку внутригрупповой (остаточной) дисперсии.

$$R^2 = \frac{168,19}{765,08} = 0,2198$$

Выборочный коэффициент детерминации (R²) показывает, что 22% общей выборочной вариации времени разговора связано с конкретной тематикой. Наблюдаемое значение F-статистики меньшее, чем критическое, подтверждает, что средняя продолжительность разговоров незначимо различается в зависимости от тематики.

Режим "Двухфакторный дисперсионный анализ без повторений"

Основой проведения двухфакторного дисперсионного анализа служит комбинационная группировка по двум факторам. Общая выборочная дисперсия определяется как сумма межгрупповых дисперсий по каждому из факторов (MS *строки,,* MS *столбцы*) и остаточной дисперсии (MS *погрешность*). При выполнении двухфакторного дисперсионного анализа без повторений каждому уровню факторов соответствует только одна выборка данных.

Например, требуется при уровне значимости 0,05 выяснить, влияют ли на оценку качества продукции рабочие смены и поставщики исходных материалов (см. рис. 2.2.2).

	A	В	С	D	E	F		
1		Оценка ка	чества про	дукции				
		Дневная	Ночная	Пересме				
2		смена	смена	нка				
3	Поставщик А	77,06	93,12	77,06				
4	Поставщик В	81,14	88,13	78,11				
5	Поставщик С	82,02	81,18	79,91				
6								
7	Двухфакторн	ый дисперс	ионный ан	ализ без п	овторений	?		
8	-Входные данн	Входные данные						
9	Входной инте	овал:	\$4\$2:\$D	\$5 📑		K		
10			1.44.444.44	-	Отм	ена		
11	Метки							
12	<u>А</u> льфа: 0,05				<u>С</u> пра	вка		
13								
14	Параметры вы	вода			-			
15	С В <u>ы</u> ходной							
16	🕢 Новый раб							
17	Current							
18	• повая рао	очая <u>к</u> нига						
19	L							

Рисунок 2.2.2. Диалоговое окно режима "Двухфакторный дисперсионный анализ без повторений".

Двухфакторный дисперсионный анализ без повторений

ИТОГИ	Счет	Сумма	Среднее	Дисперсия
Поставщик А	3	247,24	82,413333	85,974533
Поставщик В	3	247,38	82,46	26,4069
Поставщик С	3	243,11	81,036667	1,1284333
Дневная смена	3	240,22	80,073333	7,0037333
Ночная смена	3	262,43	87,476667	35,961033
Пересменка	3	235,08	78,36	2,0775

Дисперсионный анализ

Источник ва-	SS	df	MS	F	Р-Значение	F критическое
риации						
Строки	3,923267	2	2 1,9616333	0,091068	0,91479479	6,944276265
Столбцы	140,8585	2	2 70,429233	3,2696471	0,14404458	6,944276265
Погрешность	86,16127	2	21,540317			
Итого	230,943	8	3			

Наблюдаемое значение F-статистики для каждого из факторов (*строки* – поставщики, *столбцы* – рабочая смена) меньше критического значения. Значит, данная выборка свидетельствует о том, что не рабочая смена, не тип поставщика не оказывают влияния на качество продукции.

Режим "Двухфакторный дисперсионный анализ с повторениями"

		,										
	A	В	C	D	E	F	G	Н		J	K	L
	Номер											
1	участка	Тип станка	Сп	юсоб обраб	ботки детал	1ей			~			
2			Способ 1	Способ 2	Способ З	Способ 4	двухф	акторн	ыи дис	персио	онный.	•• 🗉 🎑
3	Участок 1	Станок 1	21,4	20,9	19,6	17,6	Входные	данные				
4	Участок 2		21,2	20,3	18,8	16,6	В <u>х</u> одной	интервал:	\$B\$	2:\$F\$14	•	OK
5	Участок З		20,1	19,8	16,4	17,5						Отмена
6	Участок 1	Станок 2	12	13,6	13	13,3	Ч <u>и</u> сло ст	оок для выбо	орки: 3			
7	Участок 2		14,2	13,3	13,7	14	Альфа:		0.05	5		<u>С</u> правка
8	Участок З		12,1	ľ 11,6	12	13,9			1-/			
9	Участок 1	Станок З	13,5	14	12,9	12,4	Параметр	ы вывода				
10	Участок 2		11,9	15,6	12,9	13,7	C Buyo	ной интерва				
11	Участок З		13,4	13,8	12,1	13	0 <u>00</u> 1×0,	, , , ,				
12	Участок 1	Станок 4	12,8	14,1	14,2	12	• Новы	и рабочии <u>л</u> и	іст: ј			
13	Участок 2		13,8	13,2	13,6	14,6	🔘 Новая	я рабочая <u>к</u> ні	ига			
14	Участок З		13,7	15,3	13,3	14						
15												

Рисунок 2.2.3. Диалоговое окно режима "Двухфакторный дисперсионный анализ с повторениями".

При выполнении двухфакторного дисперсионного анализа с повторениями каждому уровню факторов соответствует несколько выборок данных. Например, имеются следующие выборочные данные о выработке дета-

лей на разных типах станков различными способами обработки.

ИТОГИ		Способ 1	Способ 2	Способ 3	Способ 4	Итого	
	Станок 1						
Счет		3	3	3	3	12	-
Сумма		62,7	61,0	54,8	51,7	230,2	
Среднее		20,9	20,3	18,3	17,2	19,2	
Дисперсия		0,5	0,3	2,8	0,3	3,1	
	Станок 2						
Счет		3	3	3	3	12	•
Сумма		38,3	38,5	38,7	41,2	156,7	
Среднее		12,8	12,8	12,9	13,7	13,1	
Дисперсия		1,5	1,2	0,7	0,1	0,8	
	Станок 3						
Счет		3	3	3	3	12	•
Сумма		38,8	43,4	37,9	39,1	159,2	
Среднее		12,9	14,5	12,6	13,0	13,3	
Дисперсия		0,8	1,0	0,2	0,4	1,0	
	Станок 4						
Счет		3	3	3	3	12	•
Сумма		40,3	42,6	41,1	40,6	164,6	
Среднее		13,4	14,2	13,7	13,5	13,7	
Дисперсия		0,3	1,1	0,2	1,9	0,7	
	Итого						
Счет		12	12	12	12		•
Сумма		180,1	185,5	172,5	172,6		
Среднее		15,0	15,5	14,4	14,4		
Дисперсия		13,3	9,7	6,4	3,5		
Дисперсионн	ый анализ						
Источник е	зариации	SS	df	MS	F	Р-Знач	F
							крит
Выборка		309,26	3,00	103,09	123,64	0,00	2,90
Столбцы		9,97	3,00	3,32	3,99	0,02	2,90
Взаимодейст	вие	25,68	9,00	2,85	3,42	0,00	2,19
Внутри		26,68	32,00	0,83			
Итого		371,59	47,00				

Двухфакторный дисперсионный анализ с повторениями

В строке "Выборка" указаны расчетные значения показателей для фактора А – тип станка. Как видно, расчетное значение F-критерия попадает в критическую область (123,64>2,9), подтверждая, что тип станка влияет на выработку деталей. Выборочный коэффициент детерминации для фактора А:

$$R^2 = \frac{309,26}{371,59} = 0,83$$

показывает, что 83% общей выборочной вариации выработки деталей обусловлено влиянием типа станка.

В строке «Столбцы» указаны расчетные значения показателей для фактора В – способ обработки заготовок. Расчетное значение F-критерия также подтверждает, что способ обработки также влияет на выработку деталей (3,99>2,90). Выборочный коэффициент детерминации для фактора B:

$$R^2 = \frac{9,97}{371,59} = 0,03$$

показывает, что только 3% общей выборочной вариации выработки деталей связано с влиянием способа обработки заготовок.

Значимость фактора взаимодействия (3,42>2,19) свидетельствует, что эффективность различных типов станков изменяется в зависимости от способа обработки заготовок.

3. СТАТИСТИЧЕСКИЕ МЕТОДЫ ИЗУЧЕНИЯ ВЗАИМОСВЯЗЕЙ

3.1. Стандартные статистические функции

В мастере функций есть ряд статистических функций, связанных с режимами «Ковариация» и «Корреляция».

Функция КОВАР рассчитывает значение ковариации между двумя массивами данных.

Синтаксис: КОВАР (массив1; массив2)

Функция КОРЕЛЛ рассчитывает линейный коэффициент корреляции между массивами данных.

Синтаксис: КОРЕЛЛ (массив1; массив2)

В рассмотренном примере (см. рис. 3.1.1) линейный коэффициент корреляции между динамикой розничного товарооборота и реальных располагаемых денежных доходов составил 0,447.

		А	В	C	D	E	F	G	Н		J	K
1	Q		D	_КОРРЕЛ-	1	1						
2		108	114,4			Массив1	A2:A12			1 0	8:108.3:109.	1:11
3		108,3	116,8									
4		109,1	115,4			Массив2	B2:B12			<u> </u> = {11	4,4:116,8:11	5,4
5		108,5	115,6	<u> </u>						_ 0.4	47003560	
6		108,8	109,1	Возвращае	т коэффицие	ент корреляц	ИИ МЕЖДУ ДЕ	умя множест	вами данны)	= 0,+ (,	17903309	
7		110,2	119,7									
8		108,8	113,8									
9		107,9	110,4			Массив2	второй диаг	азон значен	ий. Значения	ми могут бы	ть числа, име	ена,
10		106,1	109,5				массивы или	ссылки с им	енами.			
11		107	114,2									
12		107,1	117,3	2			вначение:0.4	47903569		OK	Отм	ена
13												

Рисунок 3.1.1. Диалоговое окно функции КОРЕЛЛ

Рассмотрим порядок работы со встроенной статистической функцией ЛИНЕЙН, которая определяет коэффициенты парной линейной регрессии:

1) введите исходные данные в блок **A2:B17** или откройте существующий файл с исходными данными;

2) выделите область пустых ячеек 5 х 2 (5 строк, 2 столбца), например, в

блоке **D3 : Е7** (см. рис. 20) для вывода результатов регрессионной статистики;

3) в главном меню выберите Вставка/Функция (или на панели инструментов щелкните по кнопке Вставка функции).

4) В окне *Категория* Мастера функций выберите Статистические, в окне *Функция* – ЛИНЕЙН. Щелкните по кнопке ОК.

5) заполните аргументы функции (см. рис. 3.1.2)

линейн 🔽 🗙 🗸 =	=ЛИНЕЙН(А2:А17;В2:В17;1;1)							
ГЛИНЕЙН								
Изв_знач_у	A2:A17 🔂	= {126:137:148:191:2						
Изв_знач_х	B2:B17 🔂	= {4:4,8:3,8:8,7:8,2:9						
Константа	1 💽	= ИСТИНА						
Стат	1 🔤	= ИСТИНА						
 = {13,5240704392874;181 Возвращает параметры линейного приближения по методу наименьших квадратов.								
Стат логическое значение, которое указывает, требуется вернуть дополнительную статистику по регрессии (ИСТИНА) или нет (ЛОЖЬ).								
3	начение: 13,52407044	ОК Отмена						

Рисунок 3.1.2. Диалоговое окно ввода аргументов функции ЛИНЕЙН

Известные значения y – ссылка на первый столбец блока A2:B17, содержащий данные <u>результативного</u> признака. Известные значения x – ссылка на второй столбец этого же блока, содержащий данные <u>независимого</u> признака. *Константа* – логическое значение. Если Константа = 1, то свободный коэффициент a рассчитывается обычным образом. Если Константа = 0, то свободный коэффициент a равен 0; в данном примере укажите 1. *Статистика (Стат)* – логическое значение. Если Статистика = 1, то дополнительная информация выводится. Если Статистика = 0, то выводятся только оценки коэффициентов уравнения; мы введем 1.

6) чтобы результат регрессии разместился как массив значений, расположенный в выделенной ранее области D3:E7, после ввода всех аргументов функции ЛИНЕЙН надо одновременно нажать комбинацию клавиш <CTRL>+<SHIFT>+<ENTER> (см. рис. 3.1.3).

	E6	-	= {=	=ЛИНЕЙН((A2:A17;B	2:B17;1;1)}	
	А	В	С	D	E	F	G
1	Y	x					
2	126	4					
3	137	4,8		13,52407	181,1232		
4	148	3,8		4,271905	44,60038		
5	191	8,7		0,417211	81,28408		
6	274	8,2		10,0224	14		
7	370	9,7		66219	92499,43		
8	432	14,7					
9	445	18,7					
10	367	19,8					
11	367	10,6					
12	321	8,6					
13	307	6,5					
14	331	12,6					
15	345	6,5					
16	364	5,8					
17	384	5,7					

Рисунок 3.1.3. Результат вычисления функции ЛИНЕЙН

По результату вычисления функции ЛИНЕЙН запишем уравнение регрессии: y = 181,12 + 13,52 * x

$$(44.60)$$
 (4.27)

В скобках указаны стандартные ошибки коэффициентов.

Дополнительная регрессионная статистика будет выводиться в порядке, указанном в следующей ниже схеме:

Левый столбец массива	Правый столбец массива
Значение коэффициента b	Значение коэффициента а
Стандартная ошибка b	Стандартная ошибка а
Коэффициент детерминации \mathbf{R}^2	Среднеквадратическое отклонение у
F-критерий	Число степеней свободы
Регрессионная сумма квадратов	Остаточная сумма квадратов

Коэффициент детерминации составил 0,4172, то есть 41,72% дисперсии объема реализации обусловлено дисперсией расходов на рекламу. Это не свидетельствует об их очевидной линейной зависимости. При увеличении расходов на рекламу на 1000 рублей, объем реализации возрастает на 13520 рублей. Наблюдаемое *значение критерия Фишера* составило 10,02.

Для нахождения критического значения критерия Фишера применяется функция **FPACIIPOБP**. По аналогии с предыдущим, в окне *Категория* Мастера функций выберите **Статистические**, в окне *Функция* – **FPACIIPOБP**. Щелкните по кнопке OK(см. рис. 3.1.4).

Заполните аргументы функции:

Вероятность – это вероятность, связанная с F-распределением;

Степени свободы 1 - это числитель степеней свободы, **v1** = m.

FPACПОБР-									
	Вероятность	0,05	🛃 = 0,05						
C	тепени_свобо ды1	1	1 = 1						
C	тепени_свобо ды2	14	1 4						
= 4,600110515 Возвращает обратное значение для F-распределения вероятностей: если p = FPACП(x,), то FPACПОБР(p,) = x.									
C	тепени_свободы2	знаменатель степеней свободы - число 10^10.) от 1 до 10^10, исключая						
2	З	начение: 4,600110515	ОК Отмена						

Рисунок 3.1.4. Диалоговое окно функции **FPACПРОБР**.

Степени свободы 2 - это знаменатель степеней свободы, v2 = n-m-1.

Критическое (табличное) значение при 5% уровне значимости для $v_1=1$ и $v_2=14$ равно 4,60. Наблюдаемое значение превышает критическое, то есть признается статистическая значимость и надежность полученных оценок. Регрессионная сумма квадратов составила 66219, остаточная сумма квадратов составила 92499, 93.

3.2. Надстройка «Пакет анализа»

Режим *«Ковариация»* служит для расчета генеральной ковариации на основе выборочных данных.

Ниже приведены показатели динамики розничного товарооборота (Q), реальной заработной платы (W), реальных располагаемых доходов населения (D) и численности безработных (T) в январе-октябре 2003 года, в % к соответствующему периоду предыдущего года. Ковариация характеризует рассеивание величин и линейные связи между ними. Для независимых случайных величин ковариация равна нулю. Если величина мало отличается от своего математического ожидания (почти не случайна), то показатель ковариации будет мал.

	Α	В	С	D	Е	F	G		Н			J	
1	Q	W	D	T	Ковариан	ия						?	×
2	108	110,2	114,4	105,9	Ryonuluo						_		
3	108,3	110,7	116,8	110,2	Бходные	данные	E		, to tral	=		OK	
4	109,1	108,3	115,4	108,7	в <u>х</u> однои	интервал:	E	\$A\$:	1:\$D\$12		Ē	A	
5	108,5	109,7	115,6	107	Группира	ование:	¢	🖲 по	о стол <u>б</u> цам			Отмена	
6	108,8	108,4	109,1	105,3			(Опо	о строкам			Справка	
7	110,2	110	119,7	106	П Меткі	и в первой ст	гроке		_		1		
8	, 108,8	109,5	113,8	108,2;									
9	107,9	107,8	110,4	108	Параметр	ры вывода	_						
10	106,1	108,1	109,5	109,2	С В <u>ы</u> хо,	дной интерв	ал: Г			1			
11	107	109,2	114,2	103,6	🖲 Новы	й пабочий пи	ст: Г						
12	107,1	109,5	117,3	101,4	0	-							
13					О Новая	я рабочая <u>к</u> н	ига						

Рисунок 3.2.1. Диалоговое окно режима «Ковариация»

	Q	W	D	Т
Q	1,280545			
W	0,299727	0,893636		
D	1,702	2,35	11,276	
Т	0,496273	-0,23464	-1,867	6,731636

Ковариационная матрица

В данном примере наибольшее рассеивание характерно для динамики реального располагаемого дохода (11,28) и численности безработных (6,73). Прямая линейная связь ярко выражена между динамикой реальной заработной платы и реальных располагаемых доходов населения (2,35), между динамикой розничного товарооборота и реальных располагаемых доходов населения (1,70) обратная линейная зависимость наблюдается между реальными располагаемыми доходами населения и численностью безработных (-1,87).

Режим *«Корреляция»* предназначен для расчета генерального и выборочного коэффициентов корреляции соответственно на основе генеральных и выборочных данных (см. рис. 3.2.2.).

	Α	В	С	D	E	F	G	Н		J
1	Q	Ŵ	D	Ť	Konneggi	ия			,	? X
2	108	110,2	114,4	105,9	Durant					
3	108,3	110,7	116,8	110,2	Бходные	данные				OK
4	; 109,1	108,3	115,4	108,7	в <u>х</u> однои	интервал:	13225	51:\$D\$12		
5	108,5	109,7	115,6	107	Группира	ование:	🖲 r	ю стол <u>б</u> цам		Отмена
6	108,8	108,4	109,1	105,3			Or	ю строкам		Справка
7	110,2	110	119,7	106	🛛 🔽 Метк	и в первой ст	гроке	_		
8	108,8	109,5	113,8	108,2						
9	[107,9]	107,8	110,4	108	Параметр	ры вывода—				
10	106,1	108,1	109,5	109,2	🔿 Выхо	дной интерв	ал:		<u> </u>	
11	107	109,2	114,2	103,6	• Новы	ій пабочий пи	ист: (
12	107,1	109,5	117,3	101,4		-				
13					О Нова:	я рабочая <u>к</u> н	ига			
14										

Рисунок 3.2.2. Диалоговое окно режима «Корреляция».

Линейный коэффициент корреляции характеризует тесноту линейной зависимости.

	Q	W	D	Т
Q	1			
W	0,280187	1		
D	0,447904	0,740304	1	
Т	0,16903	-0,09567	-0,21429	1

Корреляционная матрица

Как видно из матрицы, между парами всех показателей существуют стохастические связи. Характер связей состоит в следующем: связь между динамикой реальной заработной платой и реальных располагаемых доходов является существенной и прямой (r_{xy}=0,74); связь между динамикой розничного товарооборота и реальных располагаемых доходов населения является умеренной и прямой (r_{xy}=0,44); между другими парами показателей имеется слабая линейная связь, причем между динамикой численности безработных, реальной заработной платы и реальных располагаемых доходов населения связь обратная.

Режим *«Регрессия»* служит для получения оценок коэффициентов линейной регрессии и проверки ее качества. В главном меню выполните Сервис/Анализ данных. В панели "Инструменты анализа" выберите Регрессия, затем ОК и заполните диалоговое окно режима «Регрессия».

Регрессия		? ×
Входные данные Входной интервал Y: Входной интервал X: Метки Уровень надежности:	<mark>\$А\$2:\$А\$17 № \$B\$2:\$B\$17 № П К<u>о</u>нстанта - ноль 95 %</mark>	ОК Отмена <u>С</u> правка
Параметры вывода О В <u>ы</u> ходной интервал: О Новый рабочий <u>л</u> ист: О Новая рабочая <u>к</u> нига Остатки		
■ Останки Стандартизованные оста Нормальная вероятность График нормальной вероя	птки График остатков	

Рисунок 3.2.3. Диалоговое окно режима "Регрессия"

Входной интервал Y – диапазон, содержащий данные <u>результативного</u> признака. Входной интервал X – диапазон, содержащий данные <u>независимого</u> признака. Метки – флажок, указывающий, есть ли в первой строке названия столбцов или нет. Константа-ноль – флажок, который указывает на отсутствие свободного коэффициента в уравнении. Выходной интервал – указывается левая верхняя ячейка, если вывод результатов производится в заданный интервал. Новый рабочий лист - по умолчанию вывод результатов производится на новый рабочий лист, можно указать его имя. Чтобы получить информацию об остатках, необходимо установить соответствующие флажки в этом диалоговом окне. В заключение щелкните по кнопке **ОК**. Рассмотрим пример.

Имеются следующие поквартальные данные по торговой фирме:

Y	126	137	148	191	274	370	432	445	367	367	321	307	331	345	364	384
X	4	4,8	3,8	8,7	8,2	9,7	14,7	18,7	19,8	10,6	8,6	6,5	12,6	6,5	5,8	5,7

 Y – объем реализации (тыс. руб), X – расходы на рекламу (тыс. руб).
 Оценим коэффициенты уравнения парной линейной регрессии объема реализации и расходов на рекламу. Результаты представлены ниже.

	A	В	Ċ	D	E	F				
1	вывод итогов		_							
2			П	Переменная Х 1 График остатков						
3	Регрессионная стат	ижика								
4	Множественный R	0,64592	20	⁰⁰ T .						
5	R-владрат	0,41721	E 10	00 - 1 🝾						
6	Нормированный R-всез	0,37558	181	0	* I • I	•				
7	Стандартная опнибиза	81,2841	ö -10	DO 🛊 🍾	10	20 25				
8	Наблюдения	16	-20	00 - 00						
9				л	іфеленная Х	1				
10	Дисперсионный анализ									
11		đ	.55	MS	₹.	Значимость F				
12	Регрессия	1	66219	66219,00492	10,02239736	0,006872127				
13	OCTATOR	14	92499,4	6607,102327						
14	Maroro	15	158718							
15										
16	Көзффициянты	Стандар	тнаг оши	t-статиктика	Р-Значение	Насконие 95%				
17	У-пересечение	181,123	44,6004	4,06102265	0,001167794	85,464775				
18	Переменная Х 1	13,5241	4,27191	3,165817013	0,006872127 4,36173669					

Рисунок 3.2.4. Результаты применения режима Регрессия.

Помимо регрессионной статистики, они содержат таблицу дисперсионного анализа, наблюдаемые значения статистики Стьюдента, доверительные интервалы коэффициентов регрессии, остатки модели, график остатков.

Рассмотрим результаты подробнее.

Регрессионная статистика					
Множественный R	0,64591837- коэффициент парной корреляции				
R-квадрат	0,41721054 – коэффициент детерминации				
Нормированный R-квадрат	0,37558272 – скорректированный коэф-нт детерминации				
Стандартная ошибка	81,2840841 – среднее квадратическое отклонение Ү				
Наблюдения	16 – количество наблюдений				

Коэффициент парной корреляции, равный 0,6459, свидетельствует об умеренной связи между объемом реализации и расходами на рекламу. Скорректированный коэффициент детерминации скорректирован на число степеней свободы, он указывает, что 37,5% дисперсии объема реализации объясняет регрессия с расходами на рекламу. Среднее квадратическое отклонение Y (σ_y) - средний показатель вариации объема реализации составил 81,28. Таблица дисперсионного анализа содержит еще один показатель качества регрессии – наблюдаемое значение критерия Фишера. Указана значимость для наблюдаемого значения критерия Фишера – 0,687% (вероятность отвергнуть правильную нулевую гипотезу), она меньше критического уровня значимости, заданного 5 %. В таблице также продемонстрирован расчет факторной и остаточной дисперсий на одну степень свободы.

Дисперсио	нный анал	<i>U</i> 3			
	Df –число	SS-сумма квад-	MS – дисперсия	F – наблюд.	Значимость F-
	степеней	ратов отклоне-	на одну степень	Значение	уровень значи-
	свободы	ний	свободы	критерия	мости F
				Фишера	
Регрессия	1	66219,00492	66219,00492	10,0223974	0,006872127
		(факторная)	(факторная)		
Остаток	14	92499,43258	6607,102327		
		(остаточная)	(остаточная)		
Итого	15	158718,4375			
		(общая)			

Наблюдаемое значение критерия Стьюдента для коэффициентов *a* и *b*, а также доверительные интервалы указаны в следующей таблице.

	Коэффи-	Стандартная	t-статистика	<i>P</i> -	Нижние	Верхние
	циенты	ошибка		Значение	95%	95%
Ү-пересечение	181,1231	44,6003841	4,06102265	0,001167	85,464775	276,78156
	(a)					
Переменная Х 1	13,52407	4,27190528	3,16581701	0,006872	4,3617366	22,686404
	(b)					

Запишем уравнение регрессии: у = 181,12 + 13,52*х

(44,60) (4,27) – стандартная ошибка

(4,06) (3,17) – наблюдаемая t-статистика

Для нахождения критического значения критерия Стьюдента применяется статистическая функция СТЬЮДРАСПРОБР. В окне *Категория* Мастера функций выберите **Статистические**, в окне *Функция* – **СТЬЮДРАСПРОБР**, нажмите ОК (см. рис. 3.1.5).

ГСТЬЮДРАСПОБР		
Вероятность	0,05	1 = 0,05
Степени_свободы	14	1 4
		= 2,144788596
возвращает обратное распределен	ие ствюдента.	
Степени_свободы	положительное целое число степеней (распределение.	вободы, характеризующее
	Значение:2,144788596	ОК Отмена

Рисунок 3.1.5. Диалоговое окно функции СТЬЮДРАСПРОБР после ввода аргументов.

Аргументы функции заполняем, исходя из того, что: поле *вероятность* – это вероятность, соответствующая двустороннему распределению Стьюдента; поле с*тепени свободы* – это число степеней свободы, характеризующее распределение.

В данном случае критическое (табличное) значение критерия Стьюдента при числе степеней свободы v = n-2 = 14 и уровне значимости 0,05/2=0,025 составляет 2,1448. Наблюдаемое значение t-статистики для каждого из коэффициентов превышает критическое. Следовательно, отвергается гипотеза о равенстве коэффициентов нулю и с вероятностью 95% признается их статистическая значимость. Запишем доверительные интервалы, в пределах которых с вероятностью 95% могут находиться значения коэффициентов:

85,46 < a < 276,78; 4,36 < b < 22,69.

4. МЕТОДЫ АНАЛИЗА ВРЕМЕННЫХ РЯДОВ

4.1.Стандартные статистические функции

В ППП Excel для расчета прогнозируемых значений результативного признака предназначены статистические функции ПРЕДСКАЗ, ТЕНДЕНЦИЯ, РОСТ.

Функции ПРЕДСКАЗ, ТЕНДЕНЦИЯ рассчитывают для парной регрессии прогнозируемое значение результативного признака в соответствии с линейным трендом (см. рис.4.1.1).

Синтаксис: ПРЕДСКАЗ (х; известные значения у; известные значения х) ТЕНДЕНЦИЯ (известные значения у; известные значения х; новые значения х; конст).

	A	В	С	D	E	F	G	H		J	K	
1	Объемы п	родаж авто	омобилей компани	и Ford Mot	tor Compan	у						
		Период	Объем продаж,	ПРЕДСКАЗ								
2	Год	времени	млн. дол.			x	17			1 = 17		
3	1994	1	26070		и	38 3HAU V	C3:C18				170-28375-24	1921
4	1994	2	28375			50_51104_7	0.010				570,20575,21	1721
5	1994	3	24926		И	зв_знач_х	B3:B18			1 :2	2:3:4:5:6:7:8:	:9:1
6	1994	4	27766							212	00 175	
7	1995	5	28601	Возвращае	 = 51309,175 озвращает значение линейного тренда, значение проекции по линейному приближению. 							
8	1995	6	29861									
9	1995	7	24437									
10	1995	8	27597			x	элемент дан	ных, для кот	орого предс	казывается:	значение.	
11	1996	9	28297									
12	1996	10	31762									
13	1996	11	26459	?		-	начение:313	89 175		ОК	Отм	ена
14	1996	12	31505				104011101010	,00,170				
15	1997	13	30037									
16	1997	14	32805									
17	1997	15	28196									Τ
18	1997	16	31897									

Рисунок 4.1.1. Диалоговое окно статистической функции ПРЕДСКАЗ.

Функция РОСТ рассчитывает массив прогнозируемых значений результативного признака в соответствии с экспоненциальной кривой.

	A	В	C	D	E	F	G	H		J	K	
1	Объемы п	родаж авт	омобилей компани	и Ford Mot	or Compan	iy						
		Период	Объем продаж,	POCT		1						
2	Год	времени	млн. дол.				C3/C18			1 - 12		2402
3	1994	1	26070			//////////////////////////////////////	100,010					21721
4	1994	2	28375			Изв_знач_х	B3:B18			1 = {1	2:3:4:5:6:7	:8:9:1
5	1994	3	24926			Нов_знач_х	(17			1 = {1)	7}	
6	1994	4	27766			Константа	I			 	тина	
7	1995	5	28601			Koncranie	, l 1			<u> </u>		
8	1995	6	29861							= {3;	1387,47659	57432}
9	1995	7	24437	Возвраща	ет значения	в соответств	зии с экспоне	нциальным т	рендом, воз	вращая знач	ения́у для	ŕ
10	1995	8	27597	указанных	(рядов новы	ых значений »	G.					
11	1996	9	28297									
12	1996	10	31762			Константа	логическое	значение: ко	онстанта b в	ычисляется	обычным об	іразом
13	1996	11	26459				при значения.	и истипа и	равна і при	значении ло	жь или отс	утстві
14	1996	12	31505									
15	1997	13	30037	😫			Значение: 31	387,4766		OK	0	тмена
16	1997	14	32805									
17	1997	15	28196									
18	1997	16	31897									
10												

Рисунок 4.1.2. Диалоговое окно статистической функции РОСТ

Синтаксис: РОСТ (известные значения у; известные значения х; новые значения х; конст).

4.2. Надстройка "Пакет анализа"

Режим "*Скользящее среднее*" служит для сглаживания уровней эмпирического временного ряда на основе метода простой скользящей средней.

	A	В	С	D	E	F	G	H		J	K
1	Объемы п	родаж авт	омобилей компани	и Ford Mot	or Compan	у					
			Объем продаж,	Скольз.							
2	Год	Квартал	умлн. дол.	среднее							
3	1994	1	} 26070;		Скользян	иее средне	e				? ×
4	1994	2	; 28375	26457	-Вуольные						
5	1994	3	{ 24926;	27022,33	Входные	HUTODOOD .	1777	0.45410	3	a	ок
6	1994	4	27766	27097,67	Б <u>х</u> одной	В <u>х</u> одной интервал:					
7	1995	1	28601	28742,67	🛛 🔽 <u>М</u> еткі	Метки в первой строке					мена
8	1995	2	29861	27633						Сп	равка
9	1995	3	24437	27298,33	<u>И</u> нтерва.	Интервал: 3					
10	1995	4	27597	26777	Парамет	ы вывода-					
11	1996	1	} 28297	29218,67	Выходно	й интервал	d D d	4.40417		ਗ	
12	1996	2	31762	28839,33	DDIXODINO		12/2	т.рСр17			
13	1996	3	(26459)	29908,67	Новый ра	абочий лист:					
14	1996	4	(31505)	29333,67	Новая ра	збочая книга					
15	1997	1	(31449	E a		E c				
16	1997	2	{32805	30346	І♥ ВЫВО,	д графика		тандартные	<u>п</u> огрешности		
17	1997	3	28196	30966		1	1	1			
18	1997	4	31897								
10											

Рисунок 4.2.2. Диалоговое окно режима "Скользящее среднее".

В поле «Интервал» вводится интервал сглаживания (по умолчанию интервал сглаживания равен трем).

В режиме *"Экспоненциальное сглаживание"* реализован метод простого экспоненциального сглаживания.

	A	В	C	D	E	F	G	J H		J	K
1	Объемы п	родаж авті	омобилей компани	и Ford Mot	or Compan	у					
			Объем продаж,	Экспон.							
2	Год	Квартал	млн. дол.	средняя							
3	1994	1	26070		Экспонен	щиальное	сглаживан	ие			? ×
4	1994	2	28375	26070	-Входные	данные					
5	1994	3	24926	27453	Входной	интервал:	* ***	2.46418	-	a L	OK
6	1994	4	27766	25936,8	<u>Drodinon</u>	nin opbasii	1:2222				тмена
7	1995	1	; 28601	27034,32	<u>Ф</u> актор з	затухания:	0,4				incid
8	1995	2	29861	27974,33	🔽 <u>М</u> етк	и				⊆r	равка
9	1995	3	24437	29106,33	Парамети	ъы вывода –					
10	1995	4	27597	26304,73	Выхолно	и интерезл	to t		-	a	
11	1996	1	28297	27080,09	о <u>ы</u> ходно	лингородл.	\$0\$	4:\$D\$17		<u> </u>	
12	1996	2	31762	27810,24	Новый р	абочий лист:					
13	1996	3	26459	30181,29	Новая ра	вбочая книга	i				
14	1996	4	31505	27947,92			Ec				
15	1997	1	; 30037	30082,17	Г ВЫВО	д графика		тандартные	погрешности	1	
16	1997	2	; 32805	30055,07							
17	1997	3	28196	31705,03							
18	1997	4	31897	29599,61							
19											

Рисунок 4.2.3. Диалоговое окно режима "Экспоненциальное сглаживание".

Рисунок 4.2.4. График фактических и теоретических уровней временного ряда.

В поле «Фактор затухания» вводится значение коэффициента экспоненциального сглаживания (от 0 до 1).

Выравнивание временного ряда методом простой скользящей средней и метолом экспоненциального сглаживания не позволяют выразить основную тенденцию развития (тренд) через функцию времени. Этого недостатка лишен метод аналитического выравнивания.

Построить линию тренда ППП EXCEL позволяет пункт Диаграмма в Главном меню.

Іиния тренда	? ×
Тип Параметры	
Название аппроксимирующей (сглажен	нной) кривой пама)
вперед на: 0 🔶 единиц назад на: 0 🜩 единиц	
 пересечение кривой с осью Y в точк показывать уравнение на диаграмма поместить на диаграмму величину до 	е: 0 е осто <u>в</u> ерности аппроксимации (R^2)
	ОК Отмена

Рисунок 4.2.5. Диалоговое окно Линия тренда, вкладка ПАРАМЕТРЫ. Порядок работы следующий:

1. Введите исходные данные или откройте существующий файл, содержащий анализируемые данные;

2. Для активизации *Мастера диаграмм* в главном меню выберите Вставка/Диаграмма;

3. В окне *Тип* выберите *Точечная*, затем укажите вид точечной диаграммы, щелкните по кнопке Далее.

4. Заполните диапазон данных, проверьте, соответствуют ли осям координат данные *x* и *y*. Если обнаружите несоответствие, то щелкните по кнопке *Ряд* и укажите верный диапазон *x* и *y*. 5. Заполните параметры диаграммы на разных закладках (названия диаграммы и осей, значения осей и т. п.). Щелкните по кнопке Далее.

6. Укажите место размещения диаграммы. Щелкните -Далее.

Чтобы на точечную диаграмму (поле корреляции) поместить линию регрессии, выделите область построения диаграммы, в главном меню выберите **Диаграмма/Добавить линию тренда.** Выберите тип линии тренда и для отображения на диаграмме уравнения регрессии и значения коэффициента детерминации установите соответствующие флажки на вкладке *Параметры*.(см. рис.4.2.5) Щелкните по кнопке Ок.. Ниже представлены разные типы трендов.

Часть 2. Статистический анализ данных в системе STATISTICA

Интегрированная система статистического анализа и обработки данных STATISTICA состоит из следующих компонент:

- электронных таблиц для ввода исходных данных и специализированных таблиц для вывода численных результатов анализа;

- графической системы для визуализации данных и результатов статистического анализа;
- набора модулей статистических процедур;
- встроенных языков программирования.

Для запуска системы нажмите кнопку Пуск в Windows (левый нижний угол экрана), укажите в меню курсором мыши на команду Программы. В появившемся меню выберите STATISTICA и далее подведите курсор к STATISTICA. На экране появится переключатель модулей с заголовком Statistica Module Switcher. Он содержит перечень всех модулей системы.

Система STATISTICA состоит из набора модулей, в каждом из которых собрана тематически связная группа процедур. При переключении модулей можно либо оставлять открытым только одно окно системы, либо все вызванные ранее модули.

Быстро переключаться с одного модуля на другой можно, щелкая мышью на их значках на рабочем столе; активизируя соответствующее окно приложения, если оно уже было открыто; выбирая их в меню Статистика или в окне Переключатель модулей (щелкая правой кнопкой мыши по серому полю рабочего окна).

STATISTICA включает в себя следующие специализированные статистические модули: Основные статистики и таблицы (Basic Statistics/ Tables), Непараметрическая статистика (Nonparametrics/Dictrib.), Дисперсионный анализ (ANOVA/MANOVA), Множественная регрессия (Multiple Regression), Нелинейное оценивание (Nonlinear Estimation), Кластерный анализ (Cluster Analysis), Факторный анализ (Factor Analysis), Анализ временных рядов и прогнозирование (Time Series/Forecasting), Организация хранения и обработки данных (Data Management), Канонический анализ (Canonical Analysis), Multidimensional Scaling (Многомерное шкалирование), Дерево классификации (Classification Trees), Корреспонденский анализ (Correspondence Analysis), Структурное моделирование (SEPATH), Анализ надежности (Reliability/Item Analysis), Дискриминантный анализ (Disckriminant Analysis), Лог- линейный анализ (Log-linear Analysis), Анализ выживания (Survival Analysis), Обобщенная линейная модель (General Linear Model), Обобщенная пошаговая регрессия (General Stepwise Regr.), Универсальная линейная модель (Generalized Linear Model), Частные наименьшие квадраты (Partial Least Sguares), Компоненты изменения (Variance Components).

Рабочее окно модулей имеет структуру, стандартную для Windows. Верхний заголовок содержит название модуля. Вторая строка – это строка меню, затем панель инструментов и рабочая область. Меню каждого модуля содержит систему выпадающих меню и построено как меню приложений Windows: File (операции с файлами), Edit (операции по редактированию файлов), View (изменение внешнего вида панели инструментов), Analysis (переключатель режимов модуля – специфичен для Statistica), Graphs (построение графиков), Options (настройка постоянного вида панели инструментов), Window (окна), Help (помощь).

1. ОРГАНИЗАЦИЯ ХРАНЕНИЯ И ОБРАБОТКИ ДАННЫХ В СИСТЕ-ME STATISTICA – Модуль Data Management

Покажем, как создаются файлы данных в STATISTICA. Исходное положение: вы находитесь в переключателе модулей.

Длина (мм)	Ширина (мм)	Площадь	Цена (долл.)
1	2	3	4
378	517	195426	21500
187	508	94996	11075
187	254	47498	5705

В таблице приведены данные о тарифах на рекламу в газете «Известия»:

1	2	3	4
92	254	23368	2940
92	127	11684	1515
44	127	5588	780
44	60	2640	405

В переключателей модулей (см. рис. 1.1) выберем модуль Data Management и нажмем кнопку Switch To (Перейти на). В рабочем окне имеется пустая электронная таблица размером 10 x 10 (10 переменных с именами VAR1, VAR2,... VAR10 и 10 пронумерованных наблюдений-случаев) и переключатель режимов модуля Data Management. Имеется 2 способа получения необходимой нам таблицы размером 4 x 7.

Рисунок 1.1. Переключатель модулей системы STATISTICA.

1 способ. Настройка уже имеющейся таблицы размером 10 x 10. Щелкните правой кнопкой мыши на заголовок 5 столбца (переменной VAR5), в открывшемся диалоговом окне редактирования переменной выберите Modife Variable (изменение переменной)/ Delete и, согласно подсказкам диалогового окна, удалите переменные с 5 по 10. Аналогичные действия выполните с 8-10 строками - Саse (наблюдениями). Сохраните файл с именем: reklama1.sta.

2 способ. В меню Analysis щелкните на Startup Panel (панель запуска) и выберите команду Create new data file (Создать новый файл данных):

Рисунок 1.2. Переключатель режимов модуля Data Management

В появившемся диалоговом окне укажите количество столбцов (переменных) и строк (наблюдений), запишите имя файла reklama1.sta и сохраните файл в папке данных: C: Statistica/Examples.

Create New File			? X		
New file <u>n</u> ame: C:\S	FAT\Example	s\reklama.S	<u>0</u> K		
Number of <u>v</u> ariables:	4]	Cancel		
Number of <u>c</u> ases:	7		<u>G</u> et From		
Case name <u>l</u> ength:	0	}			
Value <u>f</u> ormat:	8.3	 Enter specification new file or pre 	ations for the ss button "Get		
<u>M</u> issing data code:	-9999	From'' to use from an existin	e specifications ng file.		
Variable name p <u>r</u> efix:	VAR	File Information/Notes can b entered using the "Header.			
Variable name <u>s</u> tart no:	1	option (Edit m	enu).		
One-line file <u>h</u> eader:					

Рисунок 1.3. Диалоговое окно режима Создание нового файла.

При подготовке таблицы к вводу данных требуется указать имена переменных, их тип. Чтобы редактировать отдельную переменную, дважды левой кнопкой мыши щелкните по заголовку переменной и укажите требуемые поля диалогового окна:

Variable 1		? ×
<u>N</u> ame: VAR1	<u>M</u> D code: -9999	<u>0</u> K
– Display Format —		Cancel
Column <u>w</u> idth: 8	▲ <u>D</u> ecimals: 3 ▲	<u> </u>
<u>Category:</u> Number Date Time Scientific Currency	<u>Representation:</u> 1000,000; -1000,000 1 000,000; -1 000,000 1000,000; (1000,000) 1 000,000; (1 000,000)	All <u>Specs</u> <u>T</u> ext Values <u>V</u> alues/Stats
Percentage		🚮 <u>G</u> raphs
Long name (label, l	ink, or formula with <u>Functions</u>	_];
		*
Examples: Label: Gros Link: @E:	s income in 1991 Formulas: cellc:\file.xls!r2c2:r4c4	= v1 + v2 ; comment = (v1>0)*AGE + v3

Рисунок 1.4. Диалоговое окно спецификации переменной.

Переместите курсор на белое поле под слова Data: reklama1.sta 4v* *7с и дважды щелкните левой кнопкой мыши. В диалоговом окне Data File Header, Notes and Workbook Info (заголовок файла данных, примечания и информация рабочей области) в строке One line Data File Header (одна строка заголовка файла данных) укажите заголовок таблицы. Щелкните Ок. Теперь файл готов для ввода исходных данных. Введите исходные данные или скопируйте их из другого приложения (системы).

Data: reklama1.STA 4v * 7c 📃 🗖								
Цена рекламы								
1	2	3	4					
ДЛИНА	ШИРИН <i>А</i>	[ПЛОЩАДЬ]	ЦЕНА					
378,000	517,000		21500,00					
187,000	508,000		11075,00					
187,000	254,000		5705,000					
92,000	254,000		2940,000					
92,000	127,000		1515,000					
44,000	127,000		780,000					
44,000	60,000		405,000					
			•					

Рисунок 1.5. Таблица с введенными с клавиатуры данными.

Заполним данными переменную «Площадь». Щелкните дважды левой кнопкой мыши по заголовку переменной и в окне Variable 3 (переменная 3) запишите порядок вычисления переменной (=v1*v2):

Variable 3	? ×
<u>Name: ПЛОЩАДЬ M</u> D code: -9999 👗	<u>0</u> K
Display Format	Cancel
Column width: 8 💆 Decimals: 3 🗸	<u><</u> >>
<u>Category:</u> <u>R</u> epresentation:	
Number 1000,000; -1000,000	All Specs
Time 1000.000; -1 000,000	<u>T</u> ext Values
Scientific 1 000,000; (1 000,000)	<u>V</u> alues/Stats
Percentage	🚮 <u>G</u> raphs
Long name (label, link, or formula with Functions];
=v1*v2	*
Examples: Label: Gross income in 1991 Formulas: = Link: @Excellc:\file.xls!r2c2:r4c4 =	= v1 + v2 ; comment = (v1>0)*AGE + v3

Рисунок 1.6. Вычисление значений переменной «Площадь».

Чтобы сохранить созданный файл в пункте меню File выберите команду Save (сохранить).

2. ПЕРВИЧНЫЙ АНАЛИЗ ДАННЫХ В СИСТЕМЕ STATISTICA - Мо-

дуль Basic Statistics/ Tables

В модуле можно определить такие из описательных статистик как среднее значение, выборочную дисперсию, размах вариации, моду, медиану и другие, построить вероятностное распределение (хи-квадрат, Фишера, Стьюдента, Z), таблицы частот. Если вы находитесь в другом модуле, то в пункте меню Analysis выберите команду Quick Basic Stats (быстрые основные статистики). Эта команда имеет выпадающие режимы: Descriptive Statistics (описательная статистика); Correlation matrices (корреляционная матрица); Frequency tables (таблицы частот); Probability Calculator (вероятностный калькулятор); More (другие критерии).

Каждый из режимов реализован в отдельности. Чтобы вывести информацию в комплексе надо включить модуль Basic Statistics в переключателе модулей. Для вызова переключателя модулей в серой части рабочей области активного модуля надо щелкнуть правой кнопкой мыши (см. рис. 2.1).

Рисунок 2.1. Стартовая панель модуля Основные статистики и таблицы.

Вычисление описательных статистик

Щелкнув на кнопку Open Data откройте файл reklama1.sta. На стартовой панели модуля выберите режим Descriptive Statistics (описательная статистика). В диалоговом окне режима на вкладке Var укажите переменную, на вкладке More statistics (другие статистики) - показатели, которые требуется вычислить (см. рис. 2.2).

Рисунок 2.2. Вкладка «Статистики».

Valid N – объем выборки, Mean - выборочное среднее, Sum- сумма, Me-

Statistics		? ×
De <u>f</u> ault	AII	<u>0</u> K
I▼ Valid <u>N</u> I▼ <u>M</u> ean I▼ <u>S</u> um I▼ M <u>e</u> dian		
I S <u>t</u> andar I Varianc I Stan <u>d</u> ar I <u>9</u> 5% cor	d Deviatior e d error of m nfidence lim	nean nits of mean
☞ Minimun ► Lower & ► Range ► Q uartile	n & maximul upper qua range	n rtiles
☐ Ske <u>w</u> ne ☐ K <u>u</u> rtosis ☐ Standar ☐ Standa <u>r</u>	ss d error of s d error of k	<u>k</u> ewness urtosis
Other descript harmonic mea etc. are availa option in the N	ive statistics i ns, user-spec ible in the Des lonparametric	ncluding mode, ified percentiles, scriptive Statistics s module.

dian- медиана, Standart Deviation - выборочное стандартное отклонение, Va-

riance- выборочная дисперсия, Standart error of mean – стандартная ошибка среднего, 95% confidence limits of mean – доверительный интервал среднего с вероятностью 95%, Minimum & maximum – минимальное и максимальное значения, Lower & upper quartiles- нижняя и верхняя квартили, Range – размах вариации, Quartile range- квартильный ранг, Skewness- коэффициент асимметрии, Kurtosis- коэффициент эксцесса, Standart error of skewness- стандартная ошибка коэффициента асимметрии, Standart error of kurtosis- стандартная ошибка коэффициента эксцесса.

🚡 Descriptive	🖥 Descriptive Statistics (reklama1.sta)							
<u>C</u> ontinue	Minimum	Maximum	Range	Variance	Std.Dev.	Standard Error		
ДЛИН <i>А</i>	44,0000	378,00	334,00	13971,	118,199	44,675		
ШИРИН А	60,0000	517,00	457,00	33816,	183,893	69,505	7	
ЦЕНА	405,0000	21500,00	21095,00	589329E2	7676,775	2901,548		
•								
🔚 Descriptive	Statistics (rek	lama1.sta)				_ [IX	
<u>C</u> ontinue	Valid N	Mean	Confid. -95,000%	Confid. +95,000%	Median	Sum		
ДЛИН <i>А</i>	7	146,286	36,970	255,60	92,000	1024,00		
ШИРИН А	7	263,857	93,785	433,93	254,000	1847,00		
ЦЕНА	7	6274,286	-825,547	13374,12	2940,000	43920,00	4 🔻	
4								

Рисунок 2.3. Таблица с описательными статистиками для переменных.

Вычисление матрицы парных линейных коэффициентов корреляции

Для продолжения работы в модуле Основные статистики и таблицы в пункте меню Analysis выберите режим Startup panel и перейдите к стартовой панели модуля. На ней выберите Correlation matrices. В диалоговом окне Pearson Product-Moment Correlation на вкладке One variable list (square matrix)- (один список переменных (квадратная матрица)) выделите переменные ЦЕНА и ДЛИНА и щелкните Ок для вывода матрицы с коэффициентами корреляции. Щелкнув мышью по вкладке Correlations диалогового окна Pearson Product-Moment Correlation, можно получить квадратную матрицу коэффициентов корреляции для всех переменных одновременно.

Correlation	s (reklama1.sta)	
<u>C</u> ontinue	Marked correlations are si N=7 (Casewise deletion of	gnificant at p < ,05000 missing data)
Variable	длин <i>а</i>	ЦЕНА
ДЛИН <i>А</i>	1,00	, 97
ЦЕНА	, 97	1,00

Рисунок 2.4. Таблица с коэффициентами корреляции.

В этом же диалоговом окне, на вкладке 2D scatterplot (диаграмма рассеяния по двум переменным), можно построить диаграмму рассеяния.

Рисунок 2.5. Диаграмма рассеяния цены на рекламу.

Graph18: Matri	κ Plot			_ 🗆 ×				
Matrix Plot (reklama1.STA 4v*7c)								
	I INHA	IIMPXHA	плоцадъ	цена				
	00_0ø	ø8_88	0_0_00	8 <u>00_0</u> 0				
дляна								
00_0ø			••••					
IIMPRIKA	•							
፼	•							
площадъ								
<u> </u>								
IJEHA								
Øøø_øø								

Рисунок 2.6. Матричная диаграмма рассеяния.

Матричная диаграмма рассеяния для группы переменных полезна тем, что позволяет быстро оценить и сравнить распределения выбранных перемен-

ных и форму зависимости (линейная или нелинейная) и направление связи между ними. В пункте меню Graphs (графическая галерея) выберите опцию Quick Statsgraphs (быстрые графики), в ней опцию Matrix scatterplot (матричная диаграмма рассеяния) и Casewise MD deletion.

3. ГРАФИЧЕСКИЕ ВОЗМОЖНОСТИ СИСТЕМЫ STATISTICA.

Графики можно построить по таблице исходных данных (статистические графики для первичного анализа исходных данных) и по таблице результатов (пользовательские графики). Графическая галерея Statistica позволяет выбрать сотни различных типов графиков. Диалоговое окно галереи открывается с помощью пункта меню Graphs, который присутствует в каждом модуле.

2D Histograms		? ×
Variables: Vars: VAR1		OK Cancel Op <u>t</u> ions
<u>G</u> raph Type:	<u>F</u> it Type:	CATEGORIES
Regular	Off	Variable: VAR1
Multiple	🚮 Normal	⊙ Integer Mode <u>▼ A</u> uto
Double-Y	🔠 Beta	C Categories: 10
🕰 Hanging Bars	🔛 Exponential	
Cumulative Counts	🔠 Extreme	O Boundaries: none
Breaks between	🔚 Gamma —	Codes: none
Columns	🔼 Geometric	C Multiple Subsets
<u>Show</u> Percentages	🔼 Laplace	
Y axis: N	🚮 Logistic 🛛 👻	Change Variable

Рисунок 3.1. Диалоговое окно построения гистограммы.

1 шаг. Выбор типа графика. Предположим, вы хотите изучить результаты экзаменов по статистике у студентов вашего потока. Позволяет удобно представить частоту попадания величин (количества студентов) в определенные интервалы (шкала оценок) гистограмма. Создадим файл данных ekz.sta и сохраним его в папке данных C: Statistica/Examples. Оставаясь в модуле Data Management с помощью пункта меню Graphs обратимся к графической галерее и выберем нужную категорию графиков – в нашем случае -, Stats 2D Graphs (статистические двумерные графики) и в этой группе выберем необходимую группу графиков – Histogram (гистограмма).

2 шаг. Выбор переменных. В диалоговом окне построения гистограммы нажмите на кнопку Variables (переменные) и укажите переменные, которые будут отложены по осям ОХ и ОҮ.

3 шаг. Построение и сохранение графика. Выберите тип гистораммы Regular (регулярный) и требуемый частый тип off (без сравнения с законом распределения). В разделе Categories (категории) фиксируется переменная, положенная в основу группировки и количество групп (столбцов) в гистограмме, округление интервалов групп до целого (Integer Mode) или расчет интервалов автоматически (Auto), Boundaries (границы интервалов).

.Графики в Statistica хранятся в файлах с расширением *.stg. Чтобы сохранить график, в пункте меню File выберите команду Save, укажите папку Exsamples и имя файла.

Рисунок 3.2. Гистограмма результатов экзамена по статистике

Упрощенный порядок построения графиков содержится в режиме Quick Stats Graphs пункта меню Graphs. Заранее выделив переменную (или группу переменных), здесь можно быстро построить диаграмму рассеяния, гистограмму, совместив ее с кривой закона распределения, блочные диаграммы. Блочные диаграммы позволяют анализировать данные на предмет их структуры. Например, построим блочную диаграмму результатов экзамена по статистике.

Рисунок 3.3. Блочная диаграмма результатов экзамена по статистике на двух потоках.

Разброс баллов больше на первом потоке, на нем три четверти студентов имеют баллы выше 64, а одна четверть из них выше 93. На втором потоке три четверти студентов имеют баллы выше 86, здесь разброс оценок ниже.

Блочную диаграмму для отдельной переменной можно построить в пункте меню Grafs, выбрав в режиме Quick Stats Graphs категорию Box-Whisker of VAR (график "ящики с усами").

Чтобы построить блочную диаграмму для группы переменных выполните следующие действия: 1. Откройте модуль Basic Statistics/Tables (Основные статистики и таблицы). 2. Выберите в предлагаемом меню строчку t-test for dependent samples (t-критерий для зависимых выборок) и нажмите Ок. 3. Выберите переменные для анализа. После нажатия кнопки Variables (Переменные) в левом списке выберите VAR1, в правом – VAR2. В строке Input file (ввод файла) укажите Each variable contains the data for one group (каждая переменная содержит данные для одной группы). 4. Нажмите на кнопку Box-Whisker plot и выберите Median/Quart./Range (медиана/квартили/размах).

Представим информацию о структуре мужского и женского населения республики (источник: www.tatstat.ru) в виде секторных диаграмм. На диаграммах отразим три категории населения: Case 1(13,5%) – моложе трудоспособного возраста, Case 2 (65%)- в трудоспособном возрасте, Case 3 (21,6%)- старше трудоспособного. возраста.

Рисунок 3.4. Секторная диаграмма структуры мужского населения в РТ.

Рисунок 3.5. Пример трехмерного графика.

После того, как график построен, все его структурные компоненты (тип, цвет, вид линии, точек и др.) могут быть настроены пользователем. Доступ к командам настройки реализован при помощи контекстных меню, которые появляются при нажатии на правую кнопку мыши после выделения компонента графика.

4. РЕГРЕССИОННЫЙ АНАЛИЗ В СИСТЕМЕ STATISTICA - модуль Multiple Regression (множественная регрессия)

Данный модуль реализует линейные модели парной и множественной регрессии, содержит блоки дисперсионного анализа, анализа остатков, графическое представление результатов, выполняет расчет показателей общего качества регрессии и статистической значимости оценок.

Создадим файл с данными о курсах валют с 07.04.2004 по 07.05.2004 года и назовем его kurs.sta.

Установим, как курс доллара связан с курсом евро.

В переключателе модулей откройте модуль Multiple Regression (множественная регрессия).

🗮 Multiple Regr	ession	? ×
Independent	s: : EWRO : DOLLAR	Cancel
<u>I</u> nput file:	Raw Data 💌	🗁 O <u>p</u> en Data
M <u>D</u> deletion:	Casewise 💌	SELECT CRSES S
<u>M</u> ode:	Standard 💌	Weighted
I Per <u>f</u> orm def I <u>R</u> eview des I <u>E</u> xtended p	ault (non-stepwise) analysis cr. stats, corr. matrix recision computations	DF = © W-1 ON-1
☐ <u>B</u> atch proce ☐ Print residu	essing/printing al analysis	
Specify all variab later. For stepwis	les for the analysis; additional models (indep./dep. va e regression etc. deselect the default analysis check	ars) can be specified < box.

Рисунок 4.1. Стартовая панель модуля Множественная регрессия.

Нажмите кнопку Open Data (открыть данные) и откройте созданный файл данных kurs.sta. Нажмите кнопку Variables (переменные) и в диалоговом окне Select dependent and independent variable list (выбрать списки зависимых и независимых переменных) укажите зависимую и независимую переменную:

Select dependent and independen	Select dependent and independent variable lists:					
1-DATA 2-EWRO 3-DOLLAR	1-DATA 2-EWRO 3-DOLLAR	<u>O</u> K Cancel				
Select All Spread Zoom Dependent var. (or list for batch):	Select All Spread Zoom Independent variable list:					
3	2					

Рисунок. 4.2. Окно выбора переменных для анализа.

Выбрав переменные, нажмите Ок и на стартовой панели модуля укажите способ оценивания модели (Mode) стандартный (Standart). Щелкните Ок.

📇 Multiple Regression Results		? ×
Multiple Regression Result	ts	
Dep. Var. : DOLLAR Mult	tiple R : ,04617736 R ^e : ,00213235	F = ,0406012 df = 1.19
No. of cases: 21 adju Standard error of (usted R ² : -,05038700 estimate: ,185595504	p = ,842451
Intercept: 27,674425868 St	td.Error: 5,321517 t(19) = 5,2005 p < ,0001
EWRO beta=,046		
(significant beta's are hig	ghlighted)	
Regression summary	? Predict dependent var	
Analysis of variance	Compute confidence limit Compute prediction limits	s Cancel
Coyar. of reg. coefficients	Alp <u>h</u> a: .05	📰 Resi <u>d</u> ual analysis
Current sweep matrix	Red <u>u</u> ndancy	Eorrelations & desc. stats
<u>Partial correlations</u>	Step <u>w</u> ise (summary)	Alpha (display): 05 🔺 Apply

Рисунок 4.3. Окно вывода результатов.

В нем приводятся характеристики и общие показатели качества регрессии: Dep. Var. – зависимая переменная; No. of cases – количество наблюдений; Multiple R: - линейный коэффициент корреляции; R^2 – коэффициент детерминации; Adjusted R^2 – скорректированный коэффициент детерминации; F- критерий Фишера, df- число степеней свободы для критерия, p – уровень значимости для критерия; Standart error of estimate – стандартная ошибка оценки (мера рассеяния наблюдаемых значений относительно регрессионной прямой); Intercept –оценка свободного члена регрессии, Std. Error- стандартная ошибка оценки свободного члена, t(df) and p-value (значение t-критерия и уровень значимости); Beta EWRO- вета-коэффициент перед независимой переменной; Significant beta's are highlighted- значимый бета-коэффициент выделяется красным цветом.

В диалоговом окне имеются кнопки, открывающие другие таблицы результатов: Regression summary- Итоговые оценки регрессии; Analysis of variance – дисперсионный анализ; Covar. of reg. Coefficients –ковариация коэффициентов регрессии; Current sweep matrix – развернутая матрица парных коэффициентов корреляции; Partial correlations- частные коэффициенты корреляции; Redundanсу- избыточность; Residual analysis- анализ остатков; Correlations & desc. stats – коэффициент корреляции и описательная статистика; Stepwise (summary) – Итоговый результат пошаговой регрессии; Predict dependent var.- предсказанные значения зависимой переменной и расчет доверительных интервалов.

В нашем примере общие характеристики регрессии свидетельствуют об отсутствии статистической связи между курсами валют в изучаемом периоде времени и о нецелесообразности регрессионного анализа.

Изучим взаимосвязь доходов на одну акцию (зависимая переменная) и курса акций (независимая переменная):

Y	0.24	0.50	0.60	-0.22	-0.81	-0.21	0.21	0.24	-1.00	-0.32
Х	17.88	24.75	37.00	11.38	18.75	9.38	17.00	15.00	15.00	5.38

Y	0.02	0.12	-0.87	-0.66	-0.16	-0.57	-0.36	-0.9	-1.1	-0.27
Х	11.75	11.38	5.25	6.38	4.63	7.25	4.5	8.75	3.63	1.75

Создадим файл akzia.sta и проведем регрессионный анализ.

🔠 Multiple Regression Resul	ts				? ×
Multiple Regression R	esults				
Dep. Var. : PROFIT	Multiple R :	,60212534	F = 10,23773		
No. of cases: 20	adjusted R ² :	,36255492 ,32714131	df = 1,18 p = ,004966		
Standard error Intercept: -,70327186	of estimate: 3 Std.Error:	,415589985 ,1626898 t(18) = -4,323	p <	,0004

COURSE beta=,602

Рисунок 4.5. Результат парной регрессии со значимыми оценками.

Из основной информации о результатах оценивания очевидно, что между доходами и курсом акций имеется умеренная линейная связь (коэффициент линейной корреляции составляет 60, 2%), в данной выборке наблюдений 36% вариации дохода объясняет разброс курса акций. Оценка свободного члена в уравнении регрессии составляет -0,703 со стандартной ошибкой 0,16, наблюдаемое значение статистики Стьюдента -4, 323 свидетельствует о статистической значимости свободного члена. Наблюдаемое значение критерия Фишера 10,238 выше критического, подтверждает значимость уравнения парной регрессии.

В функциональной части окна результатов нажмем кнопку Regression summary и получим таблицу итоговых результатов оценивания регрессионной модели:

🔚 Regression Summary for Dependent Variable: PROFIT						
<u>C</u> ontinue	F ,60212534 RI= ,36255492 Adjusted RI= ,32714131 F(1,18)=10,238 p<,00497 Std.Error of estimate: ,41559					
N=20	BETA	St. Err. of BETA	в	St. Err. of B	t(18)	p-level
Intercpt			-,703272	,162690	-4,32278	,000410
COURSE	,602125	,188185	,036089	,011279	3,19964	,004966
 						

Рисунок 4.6. Итоговая таблица регрессии.

В первом столбце таблицы оценка стандартизованного бетакоэффициента регрессии, во втором столбце- его стандартная ошибка, в третьем столбце- точечные оценки свободного члена и коэффициента регрессии, далее –их стандартные ошибки, наблюдаемые значения статистики Стьюдента и уровни значимости оценок.

Оцененная модель имеет вид:

PROFIT=-0,7033+0,0361*COURSE

На графике (Graphs/Scatterplot/Linear) исходные данные и теоретическая прямая имеют вид:

Рисунок 4.7. Линейная регрессия для выборки наблюдений PROFIT и COURSE.

Кнопка Analysis of variance выводит таблицу дисперсионного анализа.

0	📅 Analysis of Variance; DV: PROFIT (akzia.sta)					_ 🗆 ×
0	<u>C</u> ontinue	Sums of Squares	df	Mean Squares	F	p-level
ň	Regress.	1,768209	1	1,768209	10,23773	,004966
ň	Residual	3,108871	18	,172715		
ň	Total	4,877080				

Рисунок 4.8. Таблица дисперсионного анализа.

В первом столбце таблицы записаны суммы квадратов отклонений: perpeccuoнная – 1,76; остаточная – 3,11; общая – 4,88. Во втором столбце – их степени свободы, в третьем – дисперсии (суммы квадратов отклонений в расчете на одну степень свободы), в четвертом столбце- критерий Фишера и уровень значимости его оценки.

Легко можно определить предсказанную величину дохода при заданном курсе акций. Нажмите на кнопку Predict dependent var и в появившемся окне Specify values for independent variables (определить значения независимых переменных) задайте значение независимой переменной, например COURSE=17 и нажмите Ок.

Specify values	s for indep. vars	? ×
COURSE	17	<u>0</u> K
		Cancel
		<u> </u>
		0
		Apply

Рисунок 4.9. Окно указания значения независимой переменной.

📅 Predicting Values for (akzia.sta)				
<u>C</u> ontinue	variable:	PROFIT		
			B-Weight	
variable	B-Weight	Value	🛛 \star Value	
COURSE	,036089	17,00000	,613507	
Intercpt			-,703272	
Predictd			-,089764	
-95,0%CL			-,320135	
+95,0%CL			,140606	

Рисунок 4.10. Предсказанная величина дохода.

В таблице содержится порядок ее расчета и интервальные оценки. Очевидно, что при курсе 17 денежных единиц доход не будет получен (PROFIT=-0, 0898).

Рисунок 4.11. Диалоговое окно «Анализ остатков».

Анализ адекватности модели основан на анализе остатков. Нажмите кнопку Residual Analysis. В диалоговом окне анализа остатков нажмите на кнопку Obs&residuals (наблюдаемые величины и остатки).

Данный график не свидетельствует о достаточной адекватности модели, поскольку визуально нельзя утверждать о нормальном распределении остатков.

Достаточно часто данные имеют выбросы, которые существенно могут повлиять на построение зависимости. В STATISTICA есть средство, которое позволяет удалять «ненужные» точки или группы точек. Построив график, рис. 23, щелкните по кнопке Кисть (Brush). Справа появится панель Brush. В группе опций Actions (действия) выберите опцию Turn off (выключить), в группе опций Brush выберите опцию Point (Точка)- кисть примет форму точки. Для удаления группы точек кисть может принять форму прямоугольника (опция Rectangle) или произвольной области (опция Lasso). Далее войдите в график и отметьте "ненужную" точку или группу точек. Щелкните на кнопке Update (коррекция) на панели Brushing.

Рисунок 4.13. Панель инструмента Кисть и аномальные точки, заклю-

Рисунок 4.14. Данные после удаления аномальных наблюдений и новая регрессионная прямая.

5. НЕПАРАМЕТРИЧЕСКАЯ СТАТИСТИКА - модуль Nonparametrics/ Distrib.

Непараметрические методы применяются для анализа малых выборок и для данных, измеренных в малых шкалах. Для оценки степени зависимости ме-

жду переменными рассчитывают ранговые (непараметрические) коэффициенты корреляции. Среди непараметрических процедур в Statistica есть оценка критериев различия для независимых выборок и для зависимых выборок.

Стартовая панель модуля Непараметрические статистики имеет следующий вид:

👑 Nonparametric Statistics	? ×
• Nonparametric stats • O Distribution fitting	
Nonparametric Statistics:	Lancel
2 x 2 Tables XI/VI/Phil, McNemar, Fisher exact	Select the desired
Dbserved versus expected XI	technique.
Correlations (Spearman, Kendall tau, gamma)	
🔀 Wald-Wolfowitz runs test	
🔀 Mann-Whitney U test	
Kolmogorov-Smirnov two-sample test	
🧱 Kruskal-Wallis ANOVA, median test	
📴 Sign test	
🚰 Wilcoxon matched pairs test	
Friedman ANOVA & Kendall's concordance	crea a l
Cochran Q test	Upen <u>D</u> ata
Ordinal descriptive statistics (median, mode,)	

Рисунок 5.1. Стартовая панель модуля Непараметрические статистики.

Опция Correlations (Spearman, Kendall tau, gamma) позволяет вычислить три альтернативы параметрическому коэффициенту Пирсона: коэффициент корреляции Спирмена, коэфициент «тау» Кендалла, коэффициент «гамма». Выясним, зависима ли прибыль двух филиалов в торговой компании, зафиксированная ежемесячно за год.

, ,	
😁 Nonparametric Correlations	? ×
Ariables	
Variable list 1: N1	Cancel
Variable list 2: N2	
Co <u>r</u> relation: Spearman R	
<u>Compute:</u> Detailed report	
<u>Hatrix plot</u>	CRSES S & W

Рисунок 5.2. Диалоговое окно ранговых коэффициентов корреляции.

В диалоговом окне выберем Spearman R и Detailed report (подробный отчет). После нажатия Ок появится результат:

🖥 Spearman Rank Order Correlations (firma.sta)					
<u>C</u> ontinue	MD pairwise deleted				
Pair of Variables	Valid N	Spearman R	t(N-2)	p-level	
N1 & N2	12	,853147	5,171628	,000418	

Рисунок 5.3. Расчет коэффициента Спирмена.

Видно, что корреляция между двумя переменными высокозначима. Визуализация найденной зависимости возможна двумя способами. Либо нажав кнопку Matrix plot (матричная диаграмма рассеяния), либо щелкнув правой кнопкой мыши по таблице результатов и выбрав опцию Quick Stats Graphs / Scatterplot -диаграмма рассеяния.

Рисунок 5.4. Диаграмма рассеяния, уравнение зависимости и параметрический коэффициент Пирсона.

Интересно, что корреляция Пирсона меньше корреляции Спирмена. Видимо, рассмотрение рангов (а не самих наблюдений) в действительности улучшает оценку зависимости между переменными, так как подавляет случайную изменчивость и уменьшает воздействие выбросов.

🔚 Kendall Tau Correlations (firma.sta)				
<u>C</u> ontinue	MD pairwise deleted			
Pair of Variables	Valid N	Kendall Tau	Z	p-level
N1 & N2	12	,696970	3,154337	,001609

Рисунок 5.5. Расчет коэффициента Кендалла.

Статистика Кендалла оценивает разность между вероятностью того, что наблюдаемые значения переменных имеют один и тот же порядок, и вероятностью того, что порядок различный.

На стартовой панели модуля непараметрической статистики также предусмотрена опция Ordinal descriptive statistics (порядковая описательная статистика) для расчета моды, медианы, средней геометрической, средней гармонической, размаха, дисперсии, стандартных ошибок и других оценок описательной статистики. Щелкнув на таблице результатов правой кнопкой мыши, можно построить диаграмму размаха («ящики с усами»).

6. АНАЛИЗ ВРЕМЕННЫХ РЯДОВ И ПРОГНОЗИРОВАНИЕ В СИС-TEME STATISTICA – Модуль Time Series/Forecasting

🚟 Time Series Analysis	? 🗙
💁 Yariables PRISE 🔠 OK (tran	sformations, autocorrelations, crosscorrelations, plots)
Lo <u>c</u> k Variable Long variable (series) name	Cancel ☐ Open Data SLECT S
Number of backups per variable (series): 3 👻 ARIMA (Box & Jenkins) & autocorrelation ARIMA & autocorrelation functions Interrupted time series analysis	Save variables Delete highlighted variable All selected variables (series) will be read into memory, and will be available for analysis. The analyses (e.g., transformations) will be performed on the highlighted variable. Transformed variables (series) will automatically be added to the list. To edit a short or long variable name, double-click on it. To long that the quadrating here.
Exponential smoothing & forecasting	subsequent transformations) double-click on the Lock column. Replace missing data with C Overall mean
X11 (Census 2) - monthly Distributed lags analysis	 Interpolation from adjacent points Mean of N adjacent points; N: Median of N adjacent points; N:
E Spectral (Fourier) analysis	C Predicted values from linear trend regression

Рисунок 6.1. Стартовая панель модуля Анализ временных рядов

На стартовой панели находятся кнопки методов анализа, которые реализованы в данном модуле: ARIMA – модель авторегрессии и проинтегрированного скользящего среднего (АРПСС); Interrupted time series analysis – анализ прерванного временного ряда (модели интервенции для АРПСС); Exponential smoothing & forecasting – экспоненциальное сглаживание и прогнозирование; X11(Census 2)-monthly-quarterly – X11 метод (месячно-квартально); Distributed lags analysis- анализ распределенных лагов; Spectral (Fourier) analysis – Спектральный (Фурье) анализ.

В разделе Replace missing data with представлены способы замены пропущенных данных: Overall mean – среднее значение выборки; Interpolation from adjacent points –интерполяция из смежных точек; Mean/Median of N adjacent points- среднее значение смежных точек; Predicted values from linear trend regression- предсказанное значение по линейному тренду.

Рисунок 6.2. Диалоговое окно преобразования временного ряда.

Сглаживание временного ряда с помощью простой скользящей средней можно выполнить с помощью кнопки Ok (transformations, autocorrelations, crosscorrelations, plots) на стартовой панели. После нажатия кнопки появляется диалоговое окно Transformations of variables (трансформация переменных), в

котором надо указать переменную для трансформации. После нажатия на Ок появляется окно Time series transformations (преобразование временного ряда), в котором представлены разные способы преобразования переменных. В области Smoothing (сглаживание) можно задать сглаживание по простой нецентрированной (Prior) или взвешенной (Weighted) скользящей средней, простое экспоненциальное сглаживание (Simple exponential). В строке N-pts mov. averg/median указывают интервал сглаживания.

С помощью кнопки Open data (открыть данные) откроем файл с данными о цене открытия по акциям Газпрома на МФБ с 18.05.03 по 18.05.04 года (источник: www.rbc.ru). Щелкнув по кнопке Variables (переменные), выберем переменную Prise. Символ L возле имени переменной означает, что она закрыта на ключ, и переменную нельзя удалить. Кнопка Delete highlighted variable (удалить высвеченные переменные)позволяет удалить преобразованные (добавленные) переменные, но не исходные.

🚟 Seasonal and N	🞬 Seasonal and Non-Seasonal Exponential Smoothing 🛛 🧧		
Loc <u>k</u> Variable	Long variable (series) name	Δ K (Perform exponential smoothing)	
L PRISE		E <u>x</u> it	
Num <u>b</u> er of backu	os per variable (series): 3	📱 S <u>a</u> ve variables 🛛 Delete	
Model		2 A Review and plot variables	
	None: Additive: Multipl	icative:	
No trend:	🗕 Osingle 🔐 O ᆐ O	<u>Review highlighted val</u> Plot	
Linear trend:	🖊 🖸 Holt 🛛 📈 🔿	Winters III Review multiple vars III Plot	
Exponential:		Plot 2 var lists <u>w</u> ith different scales	
Damped trend:		Autocorrelations	
Al <u>p</u> ha: ,900 🖨 🛽	elta: 100 🗧 Ga <u>m</u> ma: 100 🖨 P	hi: 100 🗧 🗰 Autocorrs Alpha (highl): 050 🛋	
User-def. initia	l value: 0, 🗧 🗌 Initial trend	d: 0, V White poise standard errors	
🗌 🗌 Get seasonal <u>f</u>	actors from variable: none	Partial auton N of lags: 15	
🔽 Make summary	plot for ea <u>c</u> h smooth		
Add pred./erro	rs to <u>w</u> ork area For <u>e</u> cast 10	cases <u>H</u> istogram Descriptive stats	
ا Grid search for best parameters (1)		🔄 Normal plot 🔄 Detr. 🔄 Half-n.	
ه Automatic s	earch for best parameters (2)	ی Other transformations & plots	

Рисунок 6.3. Стартовая панель Сезонное и несезонное сглаживание.

Для анализа данных выберем процедуру Exponential smoothing & forecasting – экспоненциальное сглаживание и прогнозирование. На экране появится стартовая панель Seasonal and Non-Seasonal Exponential Smoothing (сезонное и несезонное экспоненциальное сглаживание). Стартовая панель состоит из нескольких частей. В верхней части– область выбора переменной для анализа.

Ниже представлена область спецификации модели Model. Опишем ее подробнее. Чтобы выполнить экспоненциальное сглаживание без учета сезонных колебаний ряда, на панели предложены модели в столбце None. Для графической демонстрации результатов сглаживания установите флажок на кнопке Make summary plot for each Smooth (построить график результатов сглаживания). Если в таблице результатов требуется наличие предсказанных значений и остатков, то установите флажок на кнопке Add pred./errors to work area (добавить предсказанные значения и остатки в рабочую область). В строке Forecast (прогноз) задайте период прогнозирования.

В области Review and plot variables (обзор и графики переменных) можно просмотреть и изменить значения переменных (Review highlighted var), преобразовать переменные (Review multiple var), построить график (Plot).

В области Autocorrelations (автокорреляция) можно вывести автокорреляционную функцию временного ряда (Autocorrs), и частную автокорреляционную функцию временного ряда (Partial auto).

Рисунок 6.4. Гистограмма распределения цены открытия на акции «Газ-

пром».

Очевидна асимметрия в выборке, наибольшее количество сделок заключалось по цене от 30 до 40 ден. единиц.

На стартовой панели также предложены кнопки для построения гистограммы, совмещенной в кривой нормального распределения; для расчета показателей описательной статистики; выполнения преобразований данных и построения других графиков. Для визуального определения типа тенденции во временном ряду построим его график. Щелкнем по верхней правой кнопке Plot на стартовой панели Seasonal and Non-Seasonal al Smoothing (Сезонное и несезонное сглаживание).

Рисунок 6.5. Динамика цены открытия на акции «Газпром» с 18.05.03 по 18.05.04.

На графике можно увидеть сезонные колебания с квартальной периодичностью и предположить наличие линейной тенденции.

Параметры экспоненциального сглаживания «альфа» и «гамма» по умолчанию равны 0,1. STATISTICA дает возможность автоматического поиска нужных параметров. Этому служит кнопка Grid search for best parameters (поиск по сетке лучших параметров). Щелкните на кнопку и на экране появится окно Parameter Grid Search (поиск параметров по сетке). В нем задаются начальные значения неизвестных параметров.

Parameter Grid Search ?×								
Start parameter at:	Increment by:	Stop at:						
Al <u>p</u> ha: ,100 🚔	,100 🚔	,900 🚔	Cancel					
<u>D</u> elta: ,100 🖆	,100 🖃	,900 🗧	At each step, a respective					
Ga <u>m</u> ma: ,100 🚔	,100 💂	,900	specified value; the sums of					
Ph <u>i</u> : ,100 🖆	,100 🖻	,900 🖃	squares residuals will be computed for all possible combinations of					
parameter values. Display parameters for <u>1</u> 0 smallest mean squares								

Рисунок .6.6. Окно поиска параметров по сетке.

В верхней строке даны лучшие значения: Alpha=0.9, Gamma=0.1.

Parameter grid search (Smallest abs. errors are highlighted)								
<u>C</u> ontinue	Model: Linear trend, no season ; S0=28,63 T0=,3350 PRISE							
Model Number	Alpha	Gamma	Mean Error	Mean Abs Error	Sums of Squares	Mean Squares	Mean % Error	M Ž
73	,900000	,100000	,060454	1,274938	293,6986	3,625909	,044948	3
74	,900000	,200000	,006734	1,289480	303,7552	3,750064	-,014602	3
64	,800000	,100000	,079607	1,307436	305,4058	3,770442	,069501	3
75	,900000	, 300000	-,027557	1,312587	312,0225	3,852129	-,061106	3
65	,800000	,200000	,018909	1,309953	313,5432	3,870904	,002680	3
66	,800000	, 300000	-,021272	1,316015	319,3130	3,942136	-,052058	3
76	,900000	,400000	-,046925	1,359787	321,0187	3,963194	-,089823	3
55	,700000	,100000	,105860	1,367808	323,9090	3,998877	,103945	3
67	,800000	,400000	-,044689	1,341072	325,5084	4,018622	-,087481	3
56	,700000	,200000	,036879	1,351161	330,0715	4,074957	,029383	3

Рисунок 6.7. Таблица результатов поиска параметров по сетке.

Щелкнув на кнопку Continue (продолжить), вернитесь в окно Сезонное и несезонное экспоненциальное сглаживание и укажите лучшие значения параметров «альфа» и «гамма», Ок.

📻 Exp. smoothing: S0=28,63 T0=,3350 (gasprom.sta)										
<u>C</u> ontinue	Lin.trend PRISE	, no se	ason ; Alpha=,	900 (Gamma	=,100	-			
Case	PRIS	Έ	Smoothed Series		Re	esids				
78	60,00000		57,46100		2,53900					
79	61,00	000	61,31991		-	,31991				
80	60,00	000	62,57700		-2	,57700				
81	55,60	000	61,57078		-5	,97078				
82			E6 07070							
83		TIME		Lin.t	rend,	no seas	on ; .	Alpha=,9	JO Gamma	a=,100 属
84		SERIES		PRISE	<u> </u>					
85										
86		Summary of error					Erro	or		
87		Mean error			,060454450154					
88		Mean absolute error			1.274938021522					
89	Sume of squares		293 698595563004							
90	Mark of squares		2,0200000000							
91		nean square		3,023900507190						
		Mean pe	rcentage error				04494	8153913		
		Mean ab	s. perc. error			3.	28906	6011651		∇

Рисунок 6.8. Таблицы результатов с прогнозной оценкой.

Рисунок 6.9. График наблюдаемых, сглаженных значений цены, прогнозной оценки и остатков.

Получим прогнозные оценки методом сезонной адаптивной экспоненциальной модели. На стартовой панели Seasonal and Non-Seasonal Exponential Smoothing (сезонное и несезонное экспоненциальное сглаживание) в области спецификации Model (модель) установите флажок на Additive (аддитивная) по строке Linear trend (линейный тренд). Выше было предположение о квартальной периодичности сезонных колебаний, поэтому в строке Seasonal Component (сезонная компонента) укажите лаг 4, Ок (Perform exponential smoothing).

Exp. smoothing: Additive season (4) S0=27,87 T0=,4032								
<u>C</u> ontinue	Lin.trend, add.season; Alpha=,901 Delta=,100 Gamma=,100 📕							
Case	PRISE	Smoothed Series	Resids	Seasonal Factors				
78	60,00000	57,44800	2,55200					
79	61,00000	61,81645	-,81645					
80	60,00000	62,26066	-2,26066					
81	55,60000	61,41277	-5,81277					
82		56,95992						
83		58,19500						
84		58,63310						
85		59,26296						
86		60,10444						
87		61,33952						
88		61,77762						
89		62,40748						
90		63,24896						
91		64,48404						
				•				

Рисунок 6.10. Результаты сглаживания с учетом сезонности.

Рисунок 6.11. График наблюдаемых, сглаженных значений цены, прогнозной оценки и остатков с учетом сезонности.

Следует помнить, что экспоненциальное сглаживание наиболее простой метод прогнозирования. В данном методе не строятся доверительные интервалы и, следовательно, невозможно оценить риск при использовании прогноза. К этому методу следует обращаться на самом первом этапе исследования. Оценить подгонку модели поможет график остатков, который выводится вместе со сглаженным рядом, исходным рядом и прогнозом. В хорошо подогнанной модели в остатках не должно быть тенденции, зависимостей, увеличивающейся или уменьшающейся амплитуды колебаний.

Список литературы:

1. Макарова Н. В., Трофимец В. Я. Статистика в Excel: учебное пособие. – М.: Финансы и статистика, 2002 – 368 с.

 Боровиков В. П. Программа Statistica для студентов и инженеров. – 2-е изд. – М.: КомпьютерПресс, 2001.-301 с. –ил.

3. Боровиков В. П., Ивченко Г. И., Прогнозирование в системе Statistica/ Учебное пособие – М.: Финансы и статистика, 1999. –384 с.: ил.

4. Боровиков В. П., Боровиков И. П. Statistica- статистический анализ и обработка данных в среде Windows. – М.: Филинъ, 1998.-608 с.

5. Боровиков В. Statistica. Искусство анализа данных на компьютере: для профессионалов. 2-е изд. СПб.: Питер, 2003.- 688с.