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Abstract—We show that every measure of non-compactness on a W ∗-algebra is an ideal F-
pseudonorm. We establish a criterion of the right Fredholm property of an element with respect to a
W ∗-algebra. We prove that the element −I realizes the maximum distance from a positive element
to a subset of all isometries of a unital C∗-algebra, here I is the unit of the C∗-algebra. We also
consider differences of two finite products of elements from the unit ball of a C∗-algebra and obtain
an estimate of their ideal F-pseudonorms. We conclude the paper with a convergence criterion in
complete ideal F-norm for two series of elements from a W ∗-algebra.
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Introduction. We study ideal F-norms on C∗-algebras. We show that every measure of non-
compactness on a W ∗-algebra is an ideal F-pseudonorm. We establish a criterion of the right Fredholm
property of an element with respect to a W ∗-algebra. We prove that the minimum distance with respect
to an ideal seminorm from an arbitrary element to the Hermitian (respectively, skew-Hermitian) part of
a C∗-algebra is realized on the Hermitian (respectively, skew-Hermitian) part of this element. We show
that the maximum of the distance with respect to an ideal F-pseudonorm from a positive element to the
subset of all isometries of a unital C∗-algebra is realized on the element −I. We obtain an estimate of
an ideal F-pseudonorm of the difference of two finite products of elements of a unit ball of a C∗-algebra.
We establish a convergence criterion with respect to a complete ideal F-norm for two series consisting
of elements of a W ∗-algebra.

1. Definitions and notations. A C∗-algebra is a complex Banach ∗-algebra A such that ‖A∗A‖ =
‖A‖2 for all A ∈ A. A W ∗-algebra is a C∗-algebra A, that has a predual Banach space A∗: A � (A∗)∗.
For a C∗-algebra A, let Asa and A+ denote its subsets of Hermitian elements and positive elements,
respectively. Let A1 = {A ∈ A : ‖A‖ ≤ 1}. If A ∈ A, then |A| =

√
A∗A ∈ A+, �A = (A + A∗)/2 and

	A = (A − A∗)/(2i) lie in Asa. For a unital A, let Au and Aiso denote its subsets of unitary elements
(A∗A = AA∗ = I) and isometries (A∗A = I), respectively.

Let H be a Hilbert space over the field C, B(H) be a W ∗-algebra of all linear bounded operators in H.
Any C∗-algebra can be realized as a C∗-subalgebra in B(H) for some Hilbert space H (I. M. Gel’fand–
M. A. Naimark; see [1], theorem 3.4.1).

Let A be a W ∗-algebra. For projectors P,Q ∈ A, let us write P ∼ Q if P = U∗U and Q = UU∗ with
some U ∈ A. A projector P ∈ A is called finite, if P ∼ Q ≤ P implies P = Q; A is called finite, if the
projector I is finite. Let F denote an ideal generated by finite, with respect to A, projectors. A uniform
closure of F forms an ideal K of compact (with respect to A) elements. Let π : A → A/K be a canonical
mapping. An element A ∈ A is called right Fredholm with respect to A, if π(A) is right invertible in
A/K. Let us denote the set of all such elements as Φ−(A).
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2. Main results. Let A be a C∗-algebra.

Lemma 1 ([1], theorem 2.2.5, (2)). If A,B ∈ Asa and C ∈ A, then the inequality A ≤ B implies
CAC∗ ≤ CBC∗.

Lemma 2 (ibid., theorem 2.2.6). If A,B ∈ A+, then the inequality A ≤ B implies
√

A ≤
√

B.

Lemma 3. If A,B ∈ A, then |BA| ≤ ‖B‖ |A|.

Definition 1. A mapping ρ : A → [0,+∞] is called an ideal F-pseudonorm, if ρ(0) = 0 and the
following conditions are fulfilled:

(i) ρ(A) = ρ(A∗) = ρ(|A|) for all A ∈ A,

(ii) ρ(A) ≤ ρ(B) for all A,B ∈ A+ with A ≤ B,
(iii) ρ(A + B) ≤ ρ(A) + ρ(B) for all A,B ∈ A.
In addition, the set Jρ = {A ∈ A : ρ(A) < +∞} is a ∗-ideal in A. For example, if A ∈ Jρ and B ∈ A,

then by Lemma 3 we have

ρ(BA) = ρ(|BA|) ≤ ρ(‖B‖ |A|) ≤ ρ(([‖B‖] + 1)|A|) ≤ ([‖B‖] + 1)ρ(|A|) < +∞,

where [a] is the integer part of the number a. The following conditions are natural:

(iv) ρ(εA) → 0 (ε → 0+) for all A ∈ Jρ
⋂
A+,

(v) ρ(A∗A) = ρ(AA∗) for all A ∈ A.

A mapping ρ : A → [0,+∞] is called an ideal F-norm, if ρ(A) = 0 ⇐⇒ A = 0 and conditions (i)–
(iv) are fulfilled. If A is unital and ρ : A → R

+ satisfies condition (ii), then (iv) is equivalent to the
condition

(iv)′ ρ(εI) → 0 (ε → 0+),

since 0 ≤ εA ≤ ε‖A‖I for all ε > 0 and A ∈ A+, and we have ρ(0) = 0.
For W ∗-algebras A mappings ρ : A → [0,+∞] with properties (i)–(iii) are studied in [2–4]. For a

broad class of mappings ρ : A+ → [0,+∞] with properties (ii), (v) and

(iii)′ ρ(A + B) ≤ ρ(A) + ρ(B) for all A,B ∈ A+

representations through positive elements of A∗ are obtained: in [5] for Abelian A and in [6] for atomic A.

Lemma 4. Let A be a unital C∗-algebra and ρ : A → [0,+∞] satisfy condition (i). Then ρ(A) =
ρ(UAV ∗) for all A ∈ A and U, V ∈ Aiso. If A is a W ∗-algebra and ρ additionally satisfies
condition (ii), then ρ satisfies (v).

Proof. We have |UX| = |X| for all X ∈ A and U ∈ Aiso. Let B = AV ∗, then ρ(UAV ∗) = ρ(UB) =
ρ(|UB|) = ρ(B) = ρ(|B∗|) = ρ(|V A∗|) = ρ(|A∗|) = ρ(A).

Let A be a W ∗-algebra and ρ satisfy (i) and (ii), A ∈ A and A∗ = U |A∗| be a polar decomposition.
Then U ∈ A1 and |A∗| ∈ A+, |A| = U |A∗|U∗ and A∗A = UAA∗U∗. Let B = AA∗U∗, then |UB| ≤ |B|
by Lemma 3. We have

ρ(A∗A)=ρ(UB)=ρ(|UB|) ≤ ρ(|B|)=ρ(B)=ρ(AA∗U∗) = ρ(|(AA∗U∗)∗|)=ρ(|UAA∗|) ≤ ρ(AA∗).

Changing A by A∗, in view of the equality (A∗)∗ = A, we get ρ(AA∗) ≤ ρ(A∗A) for all A ∈ A.

Definition 2 ([7], definition 2.1). Let A be a W ∗-algebra. A mapping δ : A → R
+ is called a measure

of non-compactness, if the following conditions are fulfilled:
(a) δ is a seminorm on A,
(b) δ(A) = 0 ⇐⇒ A ∈ K,
(c) δ(A) ≤ ‖A‖ for all A ∈ A,
(d) δ(AB) ≤ δ(A)δ(B) for all A,B ∈ A.
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For example, α(A) = inf{‖A − K‖
∣
∣ K ∈ K} is a measure of non-compactness on A. It is well-

known that the Calkin algebra A/K with respect to a norm induced by α is a C∗-algebra. Since
δ(A) = δ(A + K) for all K ∈ K and measures of non-compactness δ, (c) implies δ(A) ≤ α(A) for all
A ∈ A.

Proposition 1. Every measure of non-compactness δ on a W ∗-algebra A satisfies conditions (i)–
(v).

To verify (i), we note that for A ∈ A the equality δ(A) = δ(|A|) is given in [7] (P. 366, remark 4). If
A = U |A| is a polar decomposition, then U ∈ A1 and δ(A∗) = δ(|A|U∗) ≤ δ(|A|)δ(U∗) ≤ ‖U∗‖δ(A) ≤
δ(A). Changing the places of A and A∗, we get δ(A) ≤ δ(A∗).

To verify (ii), we pick A,B ∈ A+ with A ≤ B. Then there exists an element C ∈ A1 such that
A = CBC∗ ([8], Chap. 1, Section 1, lemma 2). By (d) and (c) we have

δ(A) = δ(CBC∗) ≤ ‖C‖ ‖C∗‖δ(B) ≤ δ(B).

Properties (iii) and (iv) follow from (a); now (v) follows from Lemma 4. �
From theorem 2.4 in [7] and Proposition 1 we get

Corollary 1. Let δ be a measure of non-compactness on a W ∗-algebra A and A ∈ A. Any element
A ∈ Φ−(A) if and only if there exists a constant c > 0 such that δ(BA) ≥ cδ(B) for all B ∈ A.

Let us note that in [7] (P. 367) the statement was given with an “additional” condition of δ(T ) =
δ(T ∗), T ∈ A.

Lemma 5. Let A be a C∗-algebra and ρ : A → [0,+∞] satisfy conditions (ii) and (v). Then
ρ(
√

A1A2

√
A1) ≤ ρ(

√
A2B1

√
A2) ≤ ρ(

√
B1B2

√
B1) for all Ak, Bk ∈ A with Ak ≤ Bk, k = 1, 2.

Lemma 1 yields
√

A2A1

√
A2 ≤

√
A2B1

√
A2 and

√
B1A2

√
B1 ≤

√
B1B2

√
B1, hence

ρ(
√

A1A2

√
A1) = ρ(

√
A2A1

√
A2) ≤ ρ(

√
A2B1

√
A2) = ρ(

√
B1A2

√
B1) ≤ ρ(

√
B1B2

√
B1).

Proposition 2. Let A be a unital C∗-algebra and ρ : A → [0,+∞] satisfy condition (ii). Then
ρ(A + B) ≤ ρ(

√
I + B(I + A)

√
I + B) for all A ∈ A+

⋂
A1 and B ∈ A+. If, in addition, ρ satisfies

condition (v), then ρ(
√

I + B(I + A)
√

I + B) ≤ ρ(eB/2eAeB/2) for all A,B ∈ A+.

Proof. Since 0 ≤ A ≤ I, by Lemma 1 we have

A + B ≤ I + B +
√

I + BA
√

I + B =
√

I + B(I + A)
√

I + B.

Since I + X ≤ eX for all X ∈ A+, we can apply Lemma 5.

Proposition 3. Let A be a C∗-algebra, A ∈ A, a mapping ρ : A → [0,+∞] satisfy condition (iii)
and ρ(X) = ρ(−X) = ρ(X∗) = 2ρ(X/2) for all X ∈ A. Then ρ(A −�A) ≤ ρ(A − B) and ρ(A −
i	A) ≤ ρ(A − iB) for all B ∈ Asa.

Thus, inf
B∈Asa

ρ(A − B) = ρ(A −�A) and inf
B∈Asa

ρ(A − iB) = ρ(A − i	A) for all A ∈ A. The state-

ment follows from the equalities

A −�A =
A − B

2
− A∗ − B

2
=

A − B

2
− (A − B)∗

2
,

A − i	A =
A − iB

2
+

A∗ + iB

2
=

A − iB

2
+

(A − iB)∗

2
. �

Theorem 1. Let A be a unital C∗-algebra and ρ : A+ → R
+ satisfy conditions (ii), (iii)′, (iv)′ and

(v). Then ρ(|A − U |) ≤ ρ(A + I) for all A ∈ A+ and U ∈ Aiso.
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Proof. By theorem 4.2 in [9] we get

∀ε > 0 ∃V,W ∈ Au (|A − U | ≤ V AV ∗ + W |U |W ∗ + εI = V (A + I)V ∗ + εI).

By the properties of ρ and Lemma 4, we get ρ(|A−U |) ≤ ρ(V (A + I)V ∗ + εI) ≤ ρ(A + I) + ρ(εI). We
complete the proof by passing to the limit as ε → 0+.

Thus, sup
U∈Aiso

ρ(|A − U |) = ρ(A − (−I)) for all A ∈ A+. In other words, the maximal “ρ-distance”

from an element A ∈ A+ to the set Aiso is realized on the element U0 = −I. Since U0 ∈ Au, we have
sup

U∈Au
ρ(|A − U |) = ρ(A − (−I)).

Let J be a ∗-ideal in a unital C∗-algebra A and A ∈ A+. If U − A ∈ J for some U ∈ Aiso, then
I −A ∈ J . Indeed, we have U∗ −A ∈ J and I −A2 = (U∗ −A)(U + A) + U∗(U −A)− (U∗ −A)U ∈
J . Since I + A is invertible, we have I − A = (I − A2)(I + A)−1 ∈ J .

Corollary 2. Let A be a unital C∗-algebra and ρ : A → R
+ satisfy conditions (i)–(iii), (iv)′ and (v). If

A ∈ A has a polar decomposition A = U |A| with U ∈ Au, then

sup
V ∈Aiso

ρ(A − V ) = sup
V ∈Au

ρ(A − V ) = ρ(A + U).

Proof. For V ∈ Aiso we have U∗V ∈ Aiso. By Lemma 4 and Theorem 1, we get

ρ(A − V ) = ρ(U |A| − V ) = ρ(U(|A| − U∗V )) = ρ(|A| − U∗V )
≤ ρ(|A| + I) = ρ(U |A| + U) = ρ(A + U). �

If A is a finite W ∗-algebra, A ∈ A and A = T |A| is a polar decomposition with a partial isometry T ,
then T can be extended to U ∈ Au with the property A = U |A| (see [3], proof of theorem 2).

Theorem 2. Let A be a C∗-algebra and ρ : A → [0,+∞] satisfy conditions (i)–(iii). Then

ρ

( n∏

k=1

Ak −
n∏

k=1

Bk

)

≤
n∑

k=1

ρ(Ak − Bk) for all Ak, Bk ∈ A1, k = 1, . . . , n. (1)

Proof. By Lemmas 1–3 we get

|((A1 − B1)A2)∗| =
√

(A1 − B1)A2A∗
2(A1 − B1)∗ ≤ |(A1 − B1)∗|,

|B1(A2 − B2)| =
√

(A2 − B2)∗B∗
1B1(A2 − B2) ≤ |A2 − B2|.

Let us carry out an induction with respect to n ∈ N. For n = 2 we have

ρ(A1A2 − B1B2) = ρ((A1 − B1)A2 + B1(A2 − B2)) ≤ ρ(A1 − B1) + ρ(A2 − B2).

Induction hypothesis: let (1) be fulfilled for all n = 1, 2, . . . ,m. Then

ρ

( m+1∏

k=1

Ak −
m+1∏

k=1

Bk

)

≤ ρ

( m∏

k=1

Ak −
m∏

k=1

Bk

)

+ ρ(Am+1 − Bm+1) ≤
m+1∑

k=1

ρ(Ak − Bk). �

Theorem 3. Let A be a C∗-algebra, ρ : A → [0,+∞] be an ideal F -norm such that Jρ is complete
with respect to the metric dρ(A,B) = ρ(A − B), Xn, Yn ∈ Asa and Zn = Xn + iYn, n ∈ N. If the

series
∞∑

n=1
X2

n and
∞∑

n=1
Z2

n are ρ-convergent, then the series
∞∑

n=1
|Zn|2 and

∞∑

n=1
|Z∗

n|2 are also ρ-

convergent; for a W ∗-algebra A the converse is true as well.
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Proof. If A ∈ A, then ρ(�A) ≤ ρ(A) + ρ(A∗) = 2ρ(A). Similarly, ρ(	A) ≤ 2ρ(A). Hence, ρ(A) ≤
ρ(�A) + ρ(	A) ≤ 4ρ(A) and the ρ-convergence of the sequence of elements is equivalent to the
ρ-convergence of the Hermitian and the skew-Hermitian parts of these elements. Since the se-

ries
∞∑

n=1
(X2

n − Y 2
n ) = �

∞∑

n=1
(X2

n − Y 2
n + i(XnYn + YnXn)) = �

∞∑

n=1
Z2

n is ρ-convergent, then the series

∞∑

n=1
Y 2

n is ρ-convergent, too. Since

|Zn|2 + |Z∗
n|2 = 2X2

n + 2Y 2
n , n ∈ N, (2)

the series
∞∑

n=1
|Zn|2 and

∞∑

n=1
|Z∗

n|2 are ρ-convergent as well.

Let now A be a W ∗-algebra and the series
∞∑

n=1
|Zn|2 and

∞∑

n=1
|Z∗

n|2 be ρ-convergent. By (2), the series

∞∑

n=1
X2

n and
∞∑

n=1
Y 2

n are also ρ-convergent. Hence,

∀ε > 0 ∃N ∈ N ∀k ≥ N, ∀m ∈ N

(

ρ

( k+m∑

n=k

(X2
n + Y 2

n )
)

< ε

)

. (3)

Let ε > 0 and k, m be chosen in (3). Assume

Ak,m =
k+m∑

n=k

(X2
n + Y 2

n ), Bk,m =
k+m∑

n=k

(XnYn + YnXn).

Since (Xn ± Yn)2 ≥ 0, we get −(X2
n + Y 2

n ) ≤ XnYn + YnXn ≤ X2
n + Y 2

n . By conducting a termwise
summation of these double inequalities over all n = k, . . . , k + m, we get −Ak,m ≤ Bk,m ≤ Ak,m. By
theorem 1 in [4] and by [10] there exists an element S ∈ Au

⋂
Asa such that 2|Bk,m| ≤ Ak,m + SAk,mS.

Then S2 = I and by the definition of ρ, Lemma 4 and (3) we have

ρ(Bk,m) ≤ ρ(2|Bk,m|) ≤ ρ(Ak,m + SAk,mS)

≤ ρ(Ak,m) + ρ(
√

Ak,mS2
√

Ak,m) = 2ρ(Ak,m) < 2ε.

Thus, the series
∞∑

n=1
(XnYn + YnXn) is ρ-convergent.

Example. Let τ be a faithful normal semifinite trace on a W ∗-algebra A and a number p ∈ (0,+∞).
Define the mapping ρ : A → [0,+∞] as

ρ(A) =

{
τ(|A|p)1/p, if p > 1;

τ(|A|p), if 0 < p ≤ 1.

Then ρ satisfies conditions (i)–(v). If A = B(H) and τ = tr is a canonical trace, then Jρ coincides with
the Schatten–von Neumann ideal Sp. The operator A ∈ B(H) has a finite order, if A ∈ Sp for some
p > 0. The lower bound of the values of p, for which this relation holds, is called the order of the operator
and is denoted as q(A), i.e., q(A) = inf{p > 0 | A ∈ Sp}. Thus, q(A + B) ≤ max{q(A), q(B)} for all
A,B ∈ B(H) and q is an ideal F-pseudonorm, q does not satisfy (iv). We get Jq =

⋃

p>0
Sp.
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