Ideal F-Norms on C^* -Algebras

A. M. Bikchentaev^{1*}

¹ Kazan (Volga Region) Federal University, ul. Kremlyovskaya 18, Kazan, 420008 Russia Received October 13, 2014

Abstract—We show that every measure of non-compactness on a W^* -algebra is an ideal F-pseudonorm. We establish a criterion of the right Fredholm property of an element with respect to a W^* -algebra. We prove that the element -I realizes the maximum distance from a positive element to a subset of all isometries of a unital C^* -algebra, here I is the unit of the C^* -algebra. We also consider differences of two finite products of elements from the unit ball of a C^* -algebra and obtain an estimate of their ideal F-pseudonorms. We conclude the paper with a convergence criterion in complete ideal F-norm for two series of elements from a W^* -algebra.

DOI: 10.3103/S1066369X15050084

Keywords: C^* -algebra, W^* -algebra, trace, Hilbert space, linear operator, Fredholm operator, isometry, unitary operator, compact operator, ideal, ideal F-norm, measure of non-compactness.

Introduction. We study ideal F-norms on C^* -algebras. We show that every measure of noncompactness on a W^* -algebra is an ideal F-pseudonorm. We establish a criterion of the right Fredholm property of an element with respect to a W^* -algebra. We prove that the minimum distance with respect to an ideal seminorm from an arbitrary element to the Hermitian (respectively, skew-Hermitian) part of a C^* -algebra is realized on the Hermitian (respectively, skew-Hermitian) part of this element. We show that the maximum of the distance with respect to an ideal F-pseudonorm from a positive element to the subset of all isometries of a unital C^* -algebra is realized on the element -I. We obtain an estimate of an ideal F-pseudonorm of the difference of two finite products of elements of a unit ball of a C^* -algebra. We establish a convergence criterion with respect to a complete ideal F-norm for two series consisting of elements of a W^* -algebra.

1. Definitions and notations. A C^* -algebra is a complex Banach *-algebra \mathcal{A} such that $\|A^*A\| = \|A\|^2$ for all $A \in \mathcal{A}$. A W^* -algebra is a C^* -algebra \mathcal{A} , that has a predual Banach space \mathcal{A}_* : $\mathcal{A} \simeq (\mathcal{A}_*)^*$. For a C^* -algebra \mathcal{A} , let $\mathcal{A}^{\mathrm{sa}}$ and \mathcal{A}^+ denote its subsets of Hermitian elements and positive elements, respectively. Let $\mathcal{A}^1 = \{A \in \mathcal{A} : \|A\| \le 1\}$. If $A \in \mathcal{A}$, then $|A| = \sqrt{A^*A} \in \mathcal{A}^+$, $\Re A = (A + A^*)/2$ and $\Im A = (A - A^*)/(2i)$ lie in $\mathcal{A}^{\mathrm{sa}}$. For a unital \mathcal{A} , let \mathcal{A}^{u} and $\mathcal{A}^{\mathrm{iso}}$ denote its subsets of unitary elements $(A^*A = AA^* = I)$ and isometries $(A^*A = I)$, respectively.

Let \mathcal{H} be a Hilbert space over the field \mathbb{C} , $\mathcal{B}(\mathcal{H})$ be a W^* -algebra of all linear bounded operators in \mathcal{H} . Any C^* -algebra can be realized as a C^* -subalgebra in $\mathcal{B}(\mathcal{H})$ for some Hilbert space \mathcal{H} (I. M. Gel'fand—M. A. Naimark; see [1], theorem 3.4.1).

Let \mathcal{A} be a W^* -algebra. For projectors $P,Q\in\mathcal{A}$, let us write $P\sim Q$ if $P=U^*U$ and $Q=UU^*$ with some $U\in\mathcal{A}$. A projector $P\in\mathcal{A}$ is called *finite*, if $P\sim Q\leq P$ implies P=Q; \mathcal{A} is called *finite*, if the projector I is finite. Let \mathcal{F} denote an ideal generated by finite, with respect to \mathcal{A} , projectors. A uniform closure of \mathcal{F} forms an ideal \mathcal{K} of compact (with respect to \mathcal{A}) elements. Let $\pi:\mathcal{A}\to\mathcal{A}/\mathcal{K}$ be a canonical mapping. An element $A\in\mathcal{A}$ is called right Fredholm with respect to \mathcal{A} , if $\pi(A)$ is right invertible in \mathcal{A}/\mathcal{K} . Let us denote the set of all such elements as $\Phi^-(\mathcal{A})$.

^{*}E-mail: Airat.Bikchentaev@kpfu.ru.

2. Main results. Let \mathcal{A} be a C^* -algebra.

Lemma 1 ([1], theorem 2.2.5, (2)). If $A, B \in \mathcal{A}^{sa}$ and $C \in \mathcal{A}$, then the inequality $A \leq B$ implies $CAC^* \leq CBC^*$.

Lemma 2 (ibid., theorem 2.2.6). *If* $A, B \in \mathcal{A}^+$, then the inequality $A \leq B$ implies $\sqrt{A} \leq \sqrt{B}$.

Lemma 3. If $A, B \in \mathcal{A}$, then $|BA| \leq ||B|| |A|$.

Definition 1. A mapping $\rho: \mathcal{A} \to [0, +\infty]$ is called an ideal F-pseudonorm, if $\rho(0) = 0$ and the following conditions are fulfilled:

- (i) $\rho(A) = \rho(A^*) = \rho(|A|)$ for all $A \in \mathcal{A}$,
- (ii) $\rho(A) \leq \rho(B)$ for all $A, B \in \mathcal{A}^+$ with $A \leq B$,
- (iii) $\rho(A+B) \leq \rho(A) + \rho(B)$ for all $A, B \in \mathcal{A}$.

In addition, the set $J_{\rho} = \{A \in \mathcal{A} : \rho(A) < +\infty\}$ is a *-ideal in \mathcal{A} . For example, if $A \in J_{\rho}$ and $B \in \mathcal{A}$, then by Lemma 3 we have

$$\rho(BA) = \rho(|BA|) \le \rho(||B|||A|) \le \rho((||B|||+1)|A|) \le (||B|||+1)\rho(|A|) < +\infty,$$

where [a] is the integer part of the number a. The following conditions are natural:

- (iv) $\rho(\varepsilon A) \to 0$ ($\varepsilon \to 0+$) for all $A \in J_{\rho} \cap \mathcal{A}^+$,
- (v) $\rho(A^*A) = \rho(AA^*)$ for all $A \in \mathcal{A}$.

A mapping $\rho: \mathcal{A} \to [0, +\infty]$ is called an ideal F-norm, if $\rho(A) = 0 \iff A = 0$ and conditions (i)—(iv) are fulfilled. If \mathcal{A} is unital and $\rho: \mathcal{A} \to \mathbb{R}^+$ satisfies condition (ii), then (iv) is equivalent to the condition

(iv)'
$$\rho(\varepsilon I) \to 0 \ (\varepsilon \to 0+),$$

since $0 \le \varepsilon A \le \varepsilon \|A\|I$ for all $\varepsilon > 0$ and $A \in \mathcal{A}^+$, and we have $\rho(0) = 0$.

For W^* -algebras \mathcal{A} mappings $\rho: \mathcal{A} \to [0, +\infty]$ with properties (i)–(iii) are studied in [2–4]. For a broad class of mappings $\rho: \mathcal{A}^+ \to [0, +\infty]$ with properties (ii), (v) and

(iii)'
$$\rho(A+B) \le \rho(A) + \rho(B)$$
 for all $A, B \in \mathcal{A}^+$

representations through positive elements of \mathcal{A}_* are obtained: in [5] for Abelian \mathcal{A} and in [6] for atomic \mathcal{A} .

Lemma 4. Let \mathcal{A} be a unital C^* -algebra and $\rho: \mathcal{A} \to [0, +\infty]$ satisfy condition (i). Then $\rho(A) = \rho(UAV^*)$ for all $A \in \mathcal{A}$ and $U, V \in \mathcal{A}^{iso}$. If \mathcal{A} is a W^* -algebra and ρ additionally satisfies condition (ii), then ρ satisfies (v).

Proof. We have |UX| = |X| for all $X \in \mathcal{A}$ and $U \in \mathcal{A}^{\mathrm{iso}}$. Let $B = AV^*$, then $\rho(UAV^*) = \rho(UB) = \rho(|UB|) = \rho(|B^*|) = \rho(|VA^*|) = \rho(|A^*|) = \rho(A)$.

Let $\mathcal A$ be a W^* -algebra and ρ satisfy (i) and (ii), $A\in\mathcal A$ and $A^*=U|A^*|$ be a polar decomposition. Then $U\in\mathcal A^1$ and $|A^*|\in\mathcal A^+$, $|A|=U|A^*|U^*$ and $A^*A=UAA^*U^*$. Let $B=AA^*U^*$, then $|UB|\leq |B|$ by Lemma 3. We have

$$\rho(A^*A) = \rho(UB) = \rho(|UB|) \le \rho(|B|) = \rho(B) = \rho(AA^*U^*) = \rho(|(AA^*U^*)^*|) = \rho(|UAA^*|) \le \rho(AA^*).$$

Changing A by A^* , in view of the equality $(A^*)^* = A$, we get $\rho(AA^*) \leq \rho(A^*A)$ for all $A \in \mathcal{A}$.

Definition 2 ([7], definition 2.1). Let \mathcal{A} be a W^* -algebra. A mapping $\delta : \mathcal{A} \to \mathbb{R}^+$ is called a measure of non-compactness, if the following conditions are fulfilled:

- (a) δ is a seminorm on \mathcal{A} ,
- (b) $\delta(A) = 0 \iff A \in \mathcal{K}$,
- (c) $\delta(A) \leq ||A||$ for all $A \in \mathcal{A}$,
- (d) $\delta(AB) \leq \delta(A)\delta(B)$ for all $A, B \in \mathcal{A}$.

RUSSIAN MATHEMATICS (IZ. VUZ) Vol. 59 No. 5 2015

For example, $\alpha(A) = \inf\{\|A - K\| \mid K \in \mathcal{K}\}$ is a measure of non-compactness on \mathcal{A} . It is well-known that the Calkin algebra \mathcal{A}/\mathcal{K} with respect to a norm induced by α is a C^* -algebra. Since $\delta(A) = \delta(A + K)$ for all $K \in \mathcal{K}$ and measures of non-compactness δ , (c) implies $\delta(A) \leq \alpha(A)$ for all $A \in \mathcal{A}$.

Proposition 1. Every measure of non-compactness δ on a W*-algebra \mathcal{A} satisfies conditions (i)—(v).

To verify (i), we note that for $A \in \mathcal{A}$ the equality $\delta(A) = \delta(|A|)$ is given in [7] (P. 366, remark 4). If A = U|A| is a polar decomposition, then $U \in \mathcal{A}^1$ and $\delta(A^*) = \delta(|A|U^*) \le \delta(|A|)\delta(U^*) \le ||U^*||\delta(A) \le \delta(A)$. Changing the places of A and A^* , we get $\delta(A) \le \delta(A^*)$.

To verify (ii), we pick $A, B \in \mathcal{A}^+$ with $A \leq B$. Then there exists an element $C \in \mathcal{A}^1$ such that $A = CBC^*$ ([8], Chap. 1, Section 1, lemma 2). By (d) and (c) we have

$$\delta(A) = \delta(CBC^*) \le ||C|| \, ||C^*|| \, \delta(B) \le \delta(B).$$

Properties (iii) and (iv) follow from (a); now (v) follows from Lemma 4.

From theorem 2.4 in [7] and Proposition 1 we get

Corollary 1. Let δ be a measure of non-compactness on a W^* -algebra \mathcal{A} and $A \in \mathcal{A}$. Any element $A \in \Phi^-(\mathcal{A})$ if and only if there exists a constant c > 0 such that $\delta(BA) \geq c\delta(B)$ for all $B \in \mathcal{A}$.

Let us note that in [7] (P. 367) the statement was given with an "additional" condition of $\delta(T) = \delta(T^*), T \in \mathcal{A}$.

Lemma 5. Let \mathcal{A} be a C^* -algebra and $\rho: \mathcal{A} \to [0, +\infty]$ satisfy conditions (ii) and (v). Then $\rho(\sqrt{A_1}A_2\sqrt{A_1}) \leq \rho(\sqrt{A_2}B_1\sqrt{A_2}) \leq \rho(\sqrt{B_1}B_2\sqrt{B_1})$ for all $A_k, B_k \in \mathcal{A}$ with $A_k \leq B_k, k = 1, 2$.

Lemma 1 yields
$$\sqrt{A_2}A_1\sqrt{A_2} \le \sqrt{A_2}B_1\sqrt{A_2}$$
 and $\sqrt{B_1}A_2\sqrt{B_1} \le \sqrt{B_1}B_2\sqrt{B_1}$, hence $\rho(\sqrt{A_1}A_2\sqrt{A_1}) = \rho(\sqrt{A_2}A_1\sqrt{A_2}) \le \rho(\sqrt{A_2}B_1\sqrt{A_2}) = \rho(\sqrt{B_1}A_2\sqrt{B_1}) \le \rho(\sqrt{B_1}B_2\sqrt{B_1})$.

Proposition 2. Let \mathcal{A} be a unital C^* -algebra and $\rho: \mathcal{A} \to [0, +\infty]$ satisfy condition (ii). Then $\rho(A+B) \leq \rho(\sqrt{I+B}(I+A)\sqrt{I+B})$ for all $A \in \mathcal{A}^+ \cap \mathcal{A}^1$ and $B \in \mathcal{A}^+$. If, in addition, ρ satisfies condition (v), then $\rho(\sqrt{I+B}(I+A)\sqrt{I+B}) \leq \rho(e^{B/2}e^Ae^{B/2})$ for all $A, B \in \mathcal{A}^+$.

Proof. Since $0 \le A \le I$, by Lemma 1 we have

$$A + B \le I + B + \sqrt{I + B}A\sqrt{I + B} = \sqrt{I + B}(I + A)\sqrt{I + B}.$$

Since $I + X \leq e^X$ for all $X \in \mathcal{A}^+$, we can apply Lemma 5.

Proposition 3. Let \mathcal{A} be a C^* -algebra, $A \in \mathcal{A}$, a mapping $\rho : \mathcal{A} \to [0, +\infty]$ satisfy condition (iii) and $\rho(X) = \rho(-X) = \rho(X^*) = 2\rho(X/2)$ for all $X \in \mathcal{A}$. Then $\rho(A - \Re A) \leq \rho(A - B)$ and $\rho(A - i\Im A) \leq \rho(A - iB)$ for all $B \in \mathcal{A}^{\mathrm{sa}}$.

Thus, $\inf_{B\in\mathcal{A}^{\mathrm{sa}}}\rho(A-B)=\rho(A-\Re A)$ and $\inf_{B\in\mathcal{A}^{\mathrm{sa}}}\rho(A-iB)=\rho(A-i\Im A)$ for all $A\in\mathcal{A}$. The statement follows from the equalities

$$A - \Re A = \frac{A - B}{2} - \frac{A^* - B}{2} = \frac{A - B}{2} - \frac{(A - B)^*}{2},$$

$$A - i\Im A = \frac{A - iB}{2} + \frac{A^* + iB}{2} = \frac{A - iB}{2} + \frac{(A - iB)^*}{2}.$$

Theorem 1. Let A be a unital C^* -algebra and $\rho: A^+ \to \mathbb{R}^+$ satisfy conditions (ii), (iii)', (iv)' and (v). Then $\rho(|A-U|) \le \rho(A+I)$ for all $A \in A^+$ and $U \in A^{\mathrm{iso}}$.

Proof. By theorem 4.2 in [9] we get

$$\forall \varepsilon > 0 \,\exists V, W \in \mathcal{A}^{\mathrm{u}} \, (|A - U| \le VAV^* + W|U|W^* + \varepsilon I = V(A + I)V^* + \varepsilon I).$$

By the properties of ρ and Lemma 4, we get $\rho(|A-U|) \le \rho(V(A+I)V^* + \varepsilon I) \le \rho(A+I) + \rho(\varepsilon I)$. We complete the proof by passing to the limit as $\varepsilon \to 0+$.

Thus, $\sup_{U \in \mathcal{A}^{\text{iso}}} \rho(|A - U|) = \rho(A - (-I))$ for all $A \in \mathcal{A}^+$. In other words, the maximal " ρ -distance"

from an element $A \in \mathcal{A}^+$ to the set $\mathcal{A}^{\mathrm{iso}}$ is realized on the element $U_0 = -I$. Since $U_0 \in \mathcal{A}^{\mathrm{u}}$, we have $\sup_{U \in \mathcal{A}^{\mathrm{u}}} \rho(|A - U|) = \rho(A - (-I))$.

Let J be a *-ideal in a unital C^* -algebra $\mathcal A$ and $A\in\mathcal A^+$. If $U-A\in J$ for some $U\in\mathcal A^{\mathrm{iso}}$, then $I-A\in J$. Indeed, we have $U^*-A\in J$ and $I-A^2=(U^*-A)(U+A)+U^*(U-A)-(U^*-A)U\in J$. Since I+A is invertible, we have $I-A=(I-A^2)(I+A)^{-1}\in J$.

Corollary 2. Let \mathcal{A} be a unital C^* -algebra and $\rho : \mathcal{A} \to \mathbb{R}^+$ satisfy conditions (i)–(iii), (iv)' and (v). If $A \in \mathcal{A}$ has a polar decomposition A = U|A| with $U \in \mathcal{A}^u$, then

$$\sup_{V \in \mathcal{A}^{\mathrm{iso}}} \rho(A - V) = \sup_{V \in \mathcal{A}^{\mathrm{u}}} \rho(A - V) = \rho(A + U).$$

Proof. For $V \in \mathcal{A}^{\text{iso}}$ we have $U^*V \in \mathcal{A}^{\text{iso}}$. By Lemma 4 and Theorem 1, we get

$$\rho(A - V) = \rho(U|A| - V) = \rho(U(|A| - U^*V)) = \rho(|A| - U^*V)$$

$$\leq \rho(|A| + I) = \rho(U|A| + U) = \rho(A + U). \quad \Box$$

If \mathcal{A} is a finite W^* -algebra, $A \in \mathcal{A}$ and A = T|A| is a polar decomposition with a partial isometry T, then T can be extended to $U \in \mathcal{A}^u$ with the property A = U|A| (see [3], proof of theorem 2).

Theorem 2. Let A be a C^* -algebra and $\rho: A \to [0, +\infty]$ satisfy conditions (i)–(iii). Then

$$\rho\left(\prod_{k=1}^{n} A_{k} - \prod_{k=1}^{n} B_{k}\right) \leq \sum_{k=1}^{n} \rho(A_{k} - B_{k}) \text{ for all } A_{k}, B_{k} \in \mathcal{A}^{1}, \ k = 1, \dots, n.$$
 (1)

Proof. By Lemmas 1-3 we get

$$|((A_1 - B_1)A_2)^*| = \sqrt{(A_1 - B_1)A_2A_2^*(A_1 - B_1)^*} \le |(A_1 - B_1)^*|,$$

$$|B_1(A_2 - B_2)| = \sqrt{(A_2 - B_2)^*B_1^*B_1(A_2 - B_2)} \le |A_2 - B_2|.$$

Let us carry out an induction with respect to $n \in \mathbb{N}$. For n = 2 we have

$$\rho(A_1A_2 - B_1B_2) = \rho((A_1 - B_1)A_2 + B_1(A_2 - B_2)) \le \rho(A_1 - B_1) + \rho(A_2 - B_2).$$

Induction hypothesis: let (1) be fulfilled for all n = 1, 2, ..., m. Then

$$\rho\left(\prod_{k=1}^{m+1} A_k - \prod_{k=1}^{m+1} B_k\right) \le \rho\left(\prod_{k=1}^m A_k - \prod_{k=1}^m B_k\right) + \rho(A_{m+1} - B_{m+1}) \le \sum_{k=1}^{m+1} \rho(A_k - B_k). \quad \Box$$

Theorem 3. Let A be a C^* -algebra, $\rho: A \to [0, +\infty]$ be an ideal F-norm such that J_ρ is complete with respect to the metric $d_\rho(A, B) = \rho(A - B)$, $X_n, Y_n \in \mathcal{A}^{\mathrm{sa}}$ and $Z_n = X_n + iY_n$, $n \in \mathbb{N}$. If the series $\sum_{n=1}^{\infty} X_n^2$ and $\sum_{n=1}^{\infty} Z_n^2$ are ρ -convergent, then the series $\sum_{n=1}^{\infty} |Z_n|^2$ and $\sum_{n=1}^{\infty} |Z_n^*|^2$ are also ρ -convergent; for a W^* -algebra A the converse is true as well.

Proof. If $A \in \mathcal{A}$, then $\rho(\Re A) \leq \rho(A) + \rho(A^*) = 2\rho(A)$. Similarly, $\rho(\Im A) \leq 2\rho(A)$. Hence, $\rho(A) \leq \rho(\Re A) + \rho(\Im A) \leq 4\rho(A)$ and the ρ -convergence of the sequence of elements is equivalent to the ρ -convergence of the Hermitian and the skew-Hermitian parts of these elements. Since the series $\sum_{n=1}^{\infty} (X_n^2 - Y_n^2) = \Re \sum_{n=1}^{\infty} (X_n^2 - Y_n^2) + i(X_n Y_n + Y_n X_n) = \Re \sum_{n=1}^{\infty} Z_n^2 \text{ is } \rho\text{-convergent, then the series}$

$$\sum_{n=1}^{\infty} Y_n^2$$
 is ρ -convergent, too. Since

$$|Z_n|^2 + |Z_n^*|^2 = 2X_n^2 + 2Y_n^2, \quad n \in \mathbb{N}, \tag{2}$$

the series $\sum_{n=1}^{\infty} |Z_n|^2$ and $\sum_{n=1}^{\infty} |Z_n^*|^2$ are ρ -convergent as well.

Let now \mathcal{A} be a W^* -algebra and the series $\sum_{n=1}^{\infty} |Z_n|^2$ and $\sum_{n=1}^{\infty} |Z_n^*|^2$ be ρ -convergent. By (2), the series

 $\sum_{n=1}^{\infty} X_n^2$ and $\sum_{n=1}^{\infty} Y_n^2$ are also ρ -convergent. Hence,

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \forall k \ge N, \ \forall m \in \mathbb{N} \ \left(\rho \left(\sum_{n=k}^{k+m} (X_n^2 + Y_n^2) \right) < \varepsilon \right). \tag{3}$$

Let $\varepsilon > 0$ and k, m be chosen in (3). Assume

$$A_{k,m} = \sum_{n=k}^{k+m} (X_n^2 + Y_n^2), \quad B_{k,m} = \sum_{n=k}^{k+m} (X_n Y_n + Y_n X_n).$$

Since $(X_n \pm Y_n)^2 \ge 0$, we get $-(X_n^2 + Y_n^2) \le X_n Y_n + Y_n X_n \le X_n^2 + Y_n^2$. By conducting a termwise summation of these double inequalities over all $n = k, \ldots, k + m$, we get $-A_{k,m} \le B_{k,m} \le A_{k,m}$. By theorem 1 in [4] and by [10] there exists an element $S \in \mathcal{A}^{\mathrm{u}} \cap \mathcal{A}^{\mathrm{sa}}$ such that $2|B_{k,m}| \le A_{k,m} + SA_{k,m}S$. Then $S^2 = I$ and by the definition of ρ , Lemma 4 and (3) we have

$$\rho(B_{k,m}) \le \rho(2|B_{k,m}|) \le \rho(A_{k,m} + SA_{k,m}S)$$

$$\le \rho(A_{k,m}) + \rho(\sqrt{A_{k,m}}S^2\sqrt{A_{k,m}}) = 2\rho(A_{k,m}) < 2\varepsilon.$$

Thus, the series $\sum_{n=1}^{\infty} (X_n Y_n + Y_n X_n)$ is ρ -convergent.

Example. Let τ be a faithful normal semifinite trace on a W^* -algebra \mathcal{A} and a number $p \in (0, +\infty)$. Define the mapping $\rho : \mathcal{A} \to [0, +\infty]$ as

$$\rho(A) = \begin{cases} \tau(|A|^p)^{1/p}, & \text{if } p > 1; \\ \tau(|A|^p), & \text{if } 0$$

Then ρ satisfies conditions (i)—(v). If $\mathcal{A}=\mathcal{B}(\mathcal{H})$ and $\tau=$ tr is a canonical trace, then J_{ρ} coincides with the Schatten—von Neumann ideal \mathfrak{S}_p . The operator $A\in\mathcal{B}(\mathcal{H})$ has a finite order, if $A\in\mathfrak{S}_p$ for some p>0. The lower bound of the values of p, for which this relation holds, is called the order of the operator and is denoted as q(A), i.e., $q(A)=\inf\{p>0\mid A\in\mathfrak{S}_p\}$. Thus, $q(A+B)\leq \max\{q(A),q(B)\}$ for all $A,B\in\mathcal{B}(\mathcal{H})$ and q is an ideal F-pseudonorm, q does not satisfy (iv). We get $J_q=\bigcup_{n>0}\mathfrak{S}_p$.

REFERENCES

- 1. Murphy, G. J. C*-Algebras and Operator Theory (Academic Press, 1990; Faktorial, Moscow, 1997).
- 2. Bikchentaev, A. M. "The Triangle Inequality for Some Spaces of Measurable Operators," in *Konstr. Teor. Funkts. Funkts. Analiz* (Kazan University Press, Kazan, 1992) No. 8, 23–32.
- 3. Bikchentaev, A. M. "Minimality of Convergence in Measure Topologies on Finite von Neumann Algebras," Mathematical Notes **75**, No. 3–4, 315–321 (2004).

- 4. Bikchentaev, A. M. "Block Projection Operators in Normed Solid Spaces of Measurable Operators," Russian Mathematics (Iz. VUZ) **56**, No. 2, 75–79 (2012).
- 5. Bikchentaev, A. M. "The Haagerup Problem on Subadditive Weights on W*-Algebras," Russian Mathematics (Iz. VUZ) 55, No. 10, 82–85 (2011).
- 6. Bikchentaev, A. M. "The Haagerup problem on subadditive weights on W^* -algebras. II," Russian Mathematics (Iz. VUZ) **57**, No. 12, 66–69 (2013).
- 7. Ströh, A., Swart, J. "Measures of Noncompactness of Operators in von Neumann Algebras," Indiana Univ. Math. J. 38, No. 2, 365–375 (1989).
- 8. Dixmier, J. Les Algebres d'Opérateurs dans l'Espace Hilbertien (Algebres de von Neumann), 2nd ed. (Gauthier-Villars, Paris, 1969).
- 9. Akemann, C. A., Anderson, J., Pedersen, G. K. "Triangle Inequalities in Operator Algebras," Linear Multilinear Algebra 11, No. 2, 167–178 (1982).
- 10. Bikchentaev, A. M. "On Hermitian Operators X and Y Meeting the Condition $-Y \le X \le Y$," Lobachevskii J. Math. **34**, No. 3, 227–233 (2013).

Translated by P. A. Novikov