Показать сокращенную информацию
dc.contributor.author | Ivanshin P. | |
dc.date.accessioned | 2020-01-15T22:09:25Z | |
dc.date.available | 2020-01-15T22:09:25Z | |
dc.date.issued | 2019 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/156769 | |
dc.description.abstract | © 2019 by the authors. We prove the existence and uniqueness of the solution of the problem of the minimum norm function ∥ . ∥ ∞ with a given set of initial coefficients of the trigonometric Fourier series cj, j = 0, 1, . . ., 2n. Then, we prove the existence and uniqueness of the solution of the nonnegative function problem with a given set of coefficients of the trigonometric Fourier series cj, j = 1, . . ., 2n for the norm ∥ . ∥1. | |
dc.subject | Conditional approximation | |
dc.subject | Convergence | |
dc.subject | Fourier polynomial | |
dc.subject | Norm | |
dc.title | Functions of minimal norm with the given set of Fourier coefficients | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 7 | |
dc.relation.ispartofseries-volume | 7 | |
dc.collection | Публикации сотрудников КФУ | |
dc.source.id | SCOPUS-2019-7-7-SID85070761651 |