Kazan Federal University Digital Repository

Rhizosphere engineering: Innovative improvement of root environment

Show simple item record

dc.contributor.author Ahmadi K.
dc.contributor.author Zarebanadkouki M.
dc.contributor.author Ahmed M.
dc.contributor.author Ferrarini A.
dc.contributor.author Kuzyakov Y.
dc.contributor.author Kostka S.
dc.contributor.author Carminati A.
dc.date.accessioned 2018-09-19T22:32:27Z
dc.date.available 2018-09-19T22:32:27Z
dc.date.issued 2017
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/145301
dc.description.abstract © 2017 Elsevier B.V.The ability of roots to extract water and nutrients from soil depends on the biophysical properties of the rhizosphere, which are strongly influenced by mucilage secretion. The aim of this study was to introduce the concept of rhizoligands to engineer the biophysical properties of the rhizosphere. A rhizoligand is defined as an additive that increases the wettability of the rhizosphere and links the mucilage network to main intimate contact with the root surface. We hypothesize that rhizoligands: i) facilitate the rewetting of the rhizosphere during repeated drying and wetting cycles; ii) enhance rhizosheath formation; iii) increase enzyme activities in the rhizosphere; and iv) increase plant biomass. A commercial surfactant was selected as the prototype rhizoligand to test the effect on the rhizosphere biophysical properties of white lupin grown in quartz sand and subjected to six drying-rewetting cycles. Half of the plants were irrigated with water and the other half with the rhizoligand solution. When plants were 50 days old, we measured: i) soil water content; ii) rhizosheath mass; iii) activity of selected enzymes; iv) carbon content in the rhizosphere; and v) plant biomass. Rhizoligand increased rewetting rate of the rhizosphere after drying and subsequent rewetting, resulting in a greater soil water content. Rhizosheath formation was improved in plants irrigated with rhizoligand and sand particles attached to the roots increased by 1.64 times compared to plants irrigated with water. Activity of the enzymes chitinase, sulfatase, and β-glucosidase were 4, 7.9, and 1.5 times greater in the rhizosphere of plants irrigated with rhizoligand than in the rhizosphere of plants irrigated with water. Plant biomass was 1.2 fold greater in samples irrigated with rhizoligand solution than in samples irrigated with water. We conclude that application of rhizoligand improves plant performance by influencing the water dynamics in the rhizosphere and the plant, increasing the mechanical stability of the rhizosheaths and increasing the enzyme activities in the rhizosphere. Such effects are probably triggered by the interaction between mucilage and the applied rhizoligand, which reduces mucilage swelling (possibly by cross-linking mucilage polymers) and thus by increasing its viscosity keeps the mucilage close to the root surface. We propose the rhizoligand concept as a strategy to engineer the rhizosphere properties and to improve plant tolerance to water shortage.
dc.subject Enzyme activity
dc.subject Mucilage functions
dc.subject Rhizosheath stability
dc.subject Rhizosphere properties
dc.subject Root exudates
dc.subject Root water uptake
dc.subject Surfactant application
dc.title Rhizosphere engineering: Innovative improvement of root environment
dc.type Article
dc.relation.ispartofseries-volume 3
dc.collection Публикации сотрудников КФУ
dc.relation.startpage 176
dc.source.id SCOPUS-2017-3-SID85019762606


Files in this item

This item appears in the following Collection(s)

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Show simple item record

Search DSpace


Advanced Search

Browse

My Account

Statistics