Электронный архив

Unique spatiotemporal neuromodulation of the lumbosacral circuitry shapes locomotor success after spinal cord injury

Показать сокращенную информацию

dc.contributor.author Shah P.
dc.contributor.author Sureddi S.
dc.contributor.author Alam M.
dc.contributor.author Zhong H.
dc.contributor.author Roy R.
dc.contributor.author Edgerton V.
dc.contributor.author Gerasimenko Y.
dc.date.accessioned 2018-09-19T20:38:23Z
dc.date.available 2018-09-19T20:38:23Z
dc.date.issued 2016
dc.identifier.issn 0897-7151
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/143077
dc.description.abstract © 2016, Mary Ann Liebert, Inc. 2016.Spinal cord epidural stimulation has resulted in the initiation of voluntary leg movements and improvement in postural, bladder, and sexual function. However, one of the limitations in reaching the full potential of epidural stimulation for therapeutic purposes in humans has been the identification of optimal stimulation configurations that can neuromodulate the spinal cord for stepping. In the present work, we investigated the mechanisms underlying the specificity of interaction between the rostral and caudal spinal cord circuitries in enabling locomotion in spinal rats (n = 10) by epidural spinal cord stimulation. By using unique spatiotemporal epidural stimulation parameters of the lumbar and sacral spinal cords, a robust stepping pattern in spinal rats was observed with only six training sessions and as early as 3 weeks post-injury. Electrophysiological evidence reveals that in addition to frequency of stimulation pulses at the stimulation sites, the relative timing between stimulation pulses applied at the lumbar (L2) and sacral (S1) segments of the spinal cord heavily impacted stepping performance. Best stepping was established at a higher stimulation frequency (40 Hz vs. 5, 10, 15, and 20Hz) and at specific relative time-intervals between the stimulation pulses (L2 pulse applied at 18-25 msec after the onset of the S1 pulse; S1 pulse applied 0-7 msec after the L2 pulse). Our data suggest that controlling pulse-to-pulse timing at multiple stimulation sources provides a novel strategy to optimize spinal stepping by fine-tuning the physiological state of the locomotor networks. These findings hold direct relevance to the clinician who will incorporate electrical stimulation strategies for optimizing control of locomotion after complete paralysis.
dc.relation.ispartofseries Journal of Neurotrauma
dc.subject electromyography
dc.subject epidural stimulation
dc.subject locomotion
dc.subject locomotor networks
dc.subject neuromodulation
dc.subject rat
dc.subject spinal cord injury
dc.title Unique spatiotemporal neuromodulation of the lumbosacral circuitry shapes locomotor success after spinal cord injury
dc.type Article
dc.relation.ispartofseries-issue 18
dc.relation.ispartofseries-volume 33
dc.collection Публикации сотрудников КФУ
dc.relation.startpage 1709
dc.source.id SCOPUS08977151-2016-33-18-SID84988603503


Файлы в этом документе

Данный элемент включен в следующие коллекции

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Показать сокращенную информацию

Поиск в электронном архиве


Расширенный поиск

Просмотр

Моя учетная запись

Статистика