Kazan Federal University Digital Repository

Discontinuous mixed penalty-free Galerkin method for second-order quasilinear elliptic equations

Show simple item record

dc.contributor.author Dautov R.
dc.contributor.author Fedotov E.
dc.date.accessioned 2018-09-18T20:11:52Z
dc.date.available 2018-09-18T20:11:52Z
dc.date.issued 2013
dc.identifier.issn 0965-5425
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/137481
dc.description.abstract Discrete schemes for finding an approximate solution of the Dirichlet problem for a second-order quasilinear elliptic equation in conservative form are investigated. The schemes are based on the discontinuous Galerkin method (DG schemes) in a mixed formulation and do not involve internal penalty parameters. Error estimates typical of DG schemes with internal penalty are obtained. A new result in the analysis of the schemes is that they are proved to satisfy the Ladyzhenskaya-Babuska-Brezzi condition (inf-sup) condition. © 2013 Pleiades Publishing, Ltd.
dc.relation.ispartofseries Computational Mathematics and Mathematical Physics
dc.subject discontinuous Galerkin method
dc.subject error estimate
dc.subject LBB condition
dc.subject mixed method
dc.subject quasilinear elliptic equations
dc.title Discontinuous mixed penalty-free Galerkin method for second-order quasilinear elliptic equations
dc.type Article
dc.relation.ispartofseries-issue 11
dc.relation.ispartofseries-volume 53
dc.collection Публикации сотрудников КФУ
dc.relation.startpage 1614
dc.source.id SCOPUS09655425-2013-53-11-SID84887591526


Files in this item

This item appears in the following Collection(s)

  • Публикации сотрудников КФУ Scopus [20180]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Show simple item record

Search DSpace


Advanced Search

Browse

My Account