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ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ 
 
Настоящая работа посвящена методике обработки микросейсмических 

сигналов и разработке методов фильтрации помех в задаче пассивного низко-
частотного сейсмического зондирования (НСЗ). Среди геофизических мето-
дов НСЗ является новым малоизученным методом, который позволяет при 
небольших трудозатратах с высокой эффективностью оценивать характери-
стики геологического разреза, в частности,  наличие нефтегазовых залежей.   

Объект исследования и актуальность темы. Естественные микро-
сейсмические колебания поверхности Земли (микросейсмы) порождаются яв-
лениями как природного характера (удаленные землетрясения, атмосферные 
явления, морской прибой), так и антропогенного (транспорт, промышленные 
объекты). На основе изучения характеристик природных микросейсм базиру-
ется несколько методов поиска и разведки нефтегазовых залежей, в том числе 
метод НСЗ. Он основан на изучении явления повышенной (аномальной) низ-
кочастотной (1-10 Гц) энергии в спектре микросейсм над нефтяными объекта-
ми. С 1989 г. это явление наблюдается в различных нефтегазовых регионах 
планеты (С. Дангел, Р. Граф, Ю.Ю. Подладчиков, Г.М. Голошубин). В работах 
С.Л. Арутюнова, Ю.В. Сиротинского, А.Е. Сунцова для его усиления было 
предложено осуществлять вибровоздействие на залежь с поверхности Земли 
(технология «АНЧАР»). Метод пассивного низкочастотного сейсмического 
зондирования развивают Е.В. Биряльцев, Н.Я. Шабалин. 

В качестве физического описания явления низкочастотной спектраль-
ной аномалии над нефтяными объектами доминировала гипотеза генерации 
низкочастотных микросейсм нефтегазовой залежью. В виду отсутствия обос-
нованного количественного объяснения явления потребовалось дополнитель-
ное его изучение. В 2005 г. Е.В. Биряльцевым была выдвинута гипотеза резо-
нанса сейсмических волн между поверхностью Земли и нефтегазовой зале-
жью, которая нуждалась в практическом подтверждении. Для выбора коррект-
ного теоретического описания этого явления и для получения набора отличи-
тельных признаков полезного сигнала от помех необходимо провести деталь-
ное исследование характеристик микросейсмического сигнала.   

Фоновые микросейсмические колебания чувствительны к локальным 
поверхностным источникам помех, частотный диапазон которых, в большин-
стве случаев, пересекается с частотным диапазоном спектральной аномалии, а 
отношение «сигнал/помеха» может быть существенно меньше единицы. Это 
значительно осложняет выделение аномалии в спектре. Тот факт, что полез-
ным сигналом для технологии НСЗ является фоновый микросейсмический 
шум, относит задачу разработки методов фильтрации помех в разряд слабо-
изученных, где приоритетным является условие сохранения фонового уровня 
шума. Специфичный характер полезного сигнала и помехи требует разработ-
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ки специальных методов фильтрации, в основе которых должна лежать апри-
орная информация об их отличительных признаках. 

Для сопоставления спектральных аномалий по территории наблюдения 
необходимо определиться в выборе информативного параметра спектральной 
аномалии. Разработка алгоритма его оценки позволит автоматизировать про-
цесс параметризации спектров.  

Исследование стационарности параметров аномалии в течение про-
должительного времени наблюдения (больше суток) необходимо для ответа на 
вопрос о корректности сравнения информативного параметра спектральных 
аномалий, зарегистрированных в разное время на разных точках наблюдения. 
В случае нестационарности параметров спектральной аномалии необходимо 
разработать методику наблюдения, позволяющую учитывать их временные 
вариации. 

Как правило, технология НСЗ применяется для исследований террито-
рий вблизи уже разрабатываемых месторождений, на которых регистрируемое 
микросейсмическое поле обладает повышенным уровнем техногенных помех. 
Ее адаптация к техногенно-нагруженным районам, а также к условиям неста-
ционарного фонового микросейсмического поля, позволит проводить иссле-
дования зашумленных территорий на наличие нефтегазовых залежей.  

Все это позволяет сформулировать цель и задачи диссертационной ра-
боты. 

Целью диссертационной работы является разработка методики реги-
страции и обработки микросейсмических сигналов для выделения спектраль-
ных аномалий, коррелирующих с местоположением нефтегазовых залежей в 
задаче пассивного низкочастотного сейсмического зондирования Земли в 
присутствии помех. 

Исходя из указанной цели, поставлены следующие задачи: 
1. Исследование характеристик микросейсмического сигнала для выделения 

отличительных признаков полезной компоненты сигнала и помех, выявле-
ние особенностей полезной компоненты сигнала. 

2. Разработка и реализация методов фильтрации полезного (фонового) сиг-
нала и помех на основе их отличительных признаков.  

3. Разработка и реализация метода оценки параметров спектральной анома-
лии. 

4. Разработка методики регистрации, позволяющей учитывать временные 
вариации параметров спектральной аномалии для выявления их простран-
ственных изменений при ограниченном количестве одновременно наблю-
даемых точек, в условиях временной нестационарности и пространствен-
ной неоднородности микросейсмического поля. 

Научная новизна работы заключается в следующем: 
1. Впервые получен набор отличительных признаков, позволяющий качест-

венно и количественно разделить полезную компоненту сигнала от помех. 
Полезный сигнал в отличие от помех: локализован на участках микросейс-
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мического сигнала с минимальной энергией, является широкополосным с 
шириной полосы спектральных максимумов от 0.5 Гц до 3 Гц. Наиболее 
информативными являются стационарные участки сигнала, образованные 
суперпозицией множества случайных колебаний от некогерентных широ-
кополосных источников. Полезный сигнал коррелирован в пространстве, 
является шумом со временем корреляции 1-5 с. Спектр полезного сигнала 
содержит амплитудно-частотную характеристику (АЧХ) геосреды, поэтому 
имеет мультимодальную структуру. Параметры полезного сигнала зависят 
от влияния интенсивных источников помех. Фоновый микросейсмический 
шум, составляющий полезный сигнал, имеет случайное азимутальное на-
правление прихода. 

2. Разработан и применен комплекс методов для обработки микросейсмиче-
ских сигналов, позволяющий в автоматическом режиме отфильтровывать 
основные типы помех, который включает в себя: метод адаптивного опре-
деления порогового уровня энергии сигнала для исключения локально-
нестационарных помех в сигнале; метод нелинейной фильтрации узкопо-
лосных помех с сохранением фонового уровня шума; оптимизационный 
метод фильтрации квазигармонических помех с сохранением фонового 
уровня шума.  

3. Разработан метод оценки параметров спектральной аномалии на основе 
анализа локальных максимумов вейвлет-образа спектра микросейсмическо-
го сигнала, позволяющий автоматизировать процесс параметризации в 
технологии НСЗ.  

4. Разработана методика регистрации, позволяющая учитывать временные 
вариации параметров спектральной аномалии при ограниченном количе-
стве одновременно наблюдаемых точек в условиях временной нестацио-
нарности и пространственной неоднородности микросейсмического поля. 
Предложен алгоритм автоматического учета временных вариаций парамет-
ров спектральной аномалии для выявления их пространственных измене-
ний. 

Практическая ценность работы. Результаты работы составляют ме-
тодику регистрации и обработки микросейсмических сигналов в технологии 
пассивного низкочастотного сейсмического зондирования, которая уже при-
меняется на практике. Результаты работы составляют методику регистрации и 
обработки микросейсмических сигналов в технологии пассивного низкочас-
тотного сейсмического зондирования, которая уже применяется на практике и 
может быть тиражирована другими компаниями. Выявленный набор отличи-
тельных признаков полезной компоненты сигнала позволил обнаруживать 
аномалии в спектрах сигналов зарегистрированных на неизученных ранее тер-
риториях. Разработанный комплекс автоматизированных методов, позволил 
снизить общее время обработки в несколько раз. Предложенный комплекс 
методов апробирован при выполнении геологоразведочных работ для нефтя-
ных компаний Республики Татарстан и за ее пределами. 
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На защиту выносится: 
1. Набор отличительных признаков, позволяющий качественно и количест-

венно выделять полезную компоненту микросейсмического сигнала, в ко-
торой может наблюдаться спектральная аномалия.  

2. Комплекс методов обработки микросейсмического сигнала, позволяющий 
в автоматическом режиме отфильтровать основные типы помех. 

3. Метод оценки параметров спектральной аномалии, разработанный на ос-
нове анализа локальных максимумов вейвлет-образа спектра микросейсми-
ческого сигнала, позволяющий автоматизировать процесс параметризации 
в технологии НСЗ. 

4. Методика регистрации микросейсмического поля, позволяющая учитывать 
временные вариации параметров спектральной аномалии для выявления их 
пространственных изменений. 

Достоверность полученных результатов определяется: применением 
известных методов оптимизации, аппарата вейвлет-анализа, методов цифро-
вой обработки сигналов; применением регистрирующей аппаратуры, про-
шедшей метрологическую экспертизу. 

Личный вклад автора. Автором выявлены отличительные признаки 
полезного сигнала и помех, разработаны и программно реализованы методы 
фильтрации помех, метод оценки параметров спектральных аномалий. Пред-
ложена методика регистрации и разработан алгоритм автоматического вычис-
ления поправочных коэффициентов для учета вариаций параметров спек-
тральных аномалий. Разработанные автором методы были апробированы не-
посредственно при его участии на более 2000 точках наблюдения. Общая 
площадь исследуемых территорий составила более 150 км2.  

Апробация работы и публикации. Основные положения и выводы 
диссертации нашли отражение в 10 научных статьях, в том числе в двух статьях 
в журналах, включенных в перечень ВАК («Научно-технические ведомости 
СПбГПУ» и «Геология, Геофизика и разработка нефтяных и газовых месторо-
ждений») и одной коллективной монографии. Результаты диссертационной 
работы были представлены и обсуждались на международных конференциях: 
«General Assembly – 2008», EGU (устный доклад, Вена, Австрия), на 
X конференции Европейской ассоциации геоученых и инженеров (EAGE) 
«ГЕОМОДЕЛЬ-2008» (Геленджик), на XIV Международной конференции 
студентов, аспирантов и молодых ученых «Ломоносов» (Москва, 2007), на 
X Международном научном симпозиуме имени академика М.А.Усова студентов 
и молодых учёных «Проблемы геологии и освоения недр» (Томск, 2006). 
А также на региональных конференциях: «Волновые процессы в средах» (Зе-
ленодольск, 2007), «Актуальные проблемы естественных и гуманитарных наук» 
(Зеленодольск, 2006).  

Структура и объем диссертации. Диссертация состоит из введения, 
четырех глав и заключения. В ней содержится 157 страниц печатного текста, 
приводится 77 рисунков и 11 таблиц. Список литературы содержит 134 наиме-
нования. 



ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ 

Во введении обосновывается актуальность и научная новизна темы, 
определяется цель и задачи, формулируются положения, выносимые на защи-
ту, дается научная новизна, практическая значимость и достоверность полу-
ченных результатов исследования. 

В первой главе проводится обзор литературы в области микросейсми-
ческих колебаний. Особое внимание уделяется явлению низкочастотной ано-
малии над нефтяными месторождениями. Проводится сопоставление основ-
ных физических моделей явления: резонанс сейсмических волн внутри нефте-
газовой залежи и резонанс продольных волн в геосреде между поверхностью 
Земли и нефтегазовой залежью. На наш взгляд наиболее обоснованной явля-
ется гипотеза резонанса продольных сейсмических волн между поверхностью 
Земли и нефтегазовой залежью. Она основывается на выявленной нами зави-
симости частотного положения спектральных максимумов аномалии от време-
ни прохождения продольной сейсмической волны между поверхностью и 
нефтеносным объектом. Спектр аномалии микросейсмического сигнала со-
стоит из множества спектральных максимумов, частоты которых рассчитыва-
ются как:  

( 1)pf p f= + ⋅Δ ,  1
2f TΔ = ,  ВСП ЗМСT T t= − ,

где ВСПT  – время распространения 
продольной волны от поверхности до 
нефтегазовой залежи по данным вер-
тикального сейсмического профили-
рования (ВСП), ЗМСt  – поправка, рав-
ная времени распространения волны 
в приповерхностной зоне малых ско-
ростей (ЗМС),  – номер моды. На 
рис. 1 приведен пример аномалии в 
спектре микросейсмического сигнала, 
зарегистрированного над нефтегазо-
вой залежью, в котором наблюдаются 
две первые моды на частотах

p

0f  = 2.4 Гц и 1f =5.2 Гц.  

 
Рис. 1. Пример спектра микросейсм 
над нефтяным месторождением

В работе приводится описание аппаратного комплекса НСЗ, рабочий 
частотный диапазон которого 0.5-40 Гц. Диапазон регистрируемых амплитуд 
скорости вертикальной компоненты механических колебаний поверхности 
Земли: -90.4 10−⋅ 33 10−⋅  м/с. Частота дискретизации и разрядность АЦП 

Гц и 24 bit. 125df =

 7

При разбиении сигнала на кадры для его спектрального оценивания 
обосновывается наиболее приемлемый размер кадра, который составляет 4096 
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отсчетов. Статистически показано, что в условиях стабильной микросейсмиче-
ской обстановки достаточно 3-5 мин. наблюдения для того, чтобы определить 
наличие аномального спектрального максимума.  

Вторая глава посвящена изучению характеристик микросейсмического 
сигнала. Автором выявляются отличительные признаки полезного сигнала и 
помех, подробно рассматриваются характеристики полезного микросейсмиче-
ского сигнала.  

Показано, что регистрируемый сигнал, помимо фонового микросейс-
мического шума содержит аддитивную помеховую компоненту от различных 
источников локальных поверхностных вибраций, как антропогенного, так и 
природного происхождения. Наблюдаемые помехи способны значительно 
искажать спектр фонового микросейсмического сигнала, что может приводить 
к ошибочным прогнозам нефтеносности. Выделение полезной компоненты 
сигнала на фоне помех осложняется пересечением их частотных диапазонов и 
тем, что амплитуда помех может превышать амплитуду фонового шума в не-
сколько десятков раз.  

Предлагается классификация часто встречающихся помех и полезно-
го сигнала по: форме спектра; происхождению; стационарности; степени 
вклада АЧХ геосреды в формирование микросейсмического сигнала. По ха-
рактеру спектра полезный сигнал является широкополосным фоновым шумом 
с шириной полосы спектральных максимумов  от 0.5 Гц до 3 Гц (на террито-
рии Республики Татарстан). Общая ширина спектральной аномалии может 
достигать 10 Гц, в то время как помехи могут носить высокоамплитудный уз-
кополосный характер (ширина полосы помехи ~ 0.2 Гц на частотах свыше 
1 Гц). Узкополосные помехи в большинстве случаев можно отнести к квази-
гармоническим. Полезный сигнал преимущественно эндогенного происхож-
дения, в то время как помехи зарождаются на поверхности, как техногенными, 
так и природными источниками вибраций. Некоторые источники помех (ве-
тер, нефтепровод, электроприборы), находящиеся вблизи датчика (на расстоя-
нии менее чем 100 м) оказывают мощное прямое вибрационное воздействие 
на него, поэтому наблюдать фоновые микросейсмические колебания не пред-
ставляется возможным. Полезный сигнал образован удаленными источниками 
вибраций, не оказывающими прямого воздействия на датчик, поэтому в спек-
тре регистрируемого сигнала наблюдается отклик АЧХ геосреды. 

Анализ корреляционных характеристик полезного сигнала, зарегист-
рированного над нефтегазовой залежью, показал, что сигнал представляет 
собой широкополосный шум, состоящий из суперпозиции множества волно-
вых пакетов (цугов) длительностью порядка 1-5 с со случайным временем по-
явления. Показано, что наиболее информативными являются стационарные 
участки сигнала, образованные суперпозицией множества случайных колеба-
ний от некогерентных широкополосных источников. Фоновый микросейсми-
ческий шум, составляющий полезный сигнал, имеет случайное азимутальное 
направление прихода, тогда как микросейсмические колебания, вызванные 



близкими (~ 500 м) источниками помех, имеют ярко выраженное направление 
прихода сейсмической волны. 

Показано, что на амплитуду полезного сигнала влияют высокоампли-
тудные широкополосные локально-нестационарные помехи, а также интен-
сивность антропогенной деятельности.  

Спектральная аномалия наблюдается в среднем в частотном диапазоне 
1-6 Гц.  В различных геологических регионах при неизменности частотного 
диапазона проявления аномалии меняется ее структура. Показано, что спек-
тральная аномалия состоит из микроаномалий сдвинутых относительно друг 
друга на fΔ . Например, для регионов с глубиной залегания нефтяных объек-
тов ~ 4000 м, fΔ ~0.6 Гц, для глубины залегания нефтяных объектов ~ 800 м, 
fΔ ~2.5 Гц. Это наблюдение является одним из важнейших признаков полез-

ного микросейсмического сигнала, позволяющего связать аномалию с глуби-
ной залегания нефтяного объекта.  

В третьей главе предлагаются автоматизированные методы фильтра-
ции помеховой компоненты сигнала позволяющие отфильтровывать основ-
ные типы помех с сохранением фонового уровня микросейсмического шума 
являющегося, в технологии НСЗ, полезным сигналом. Приведенные методы 
делятся на две группы: 1) методы фильтрации локально-нестационарных по-
мех; 2) методы фильтрации узкополосных и квазигармонических помех.  

Идея методов фильтрации локально-нестационарных помех заключает-
ся в разбиении сигнала на кадры и сопоставлении каждому кадру скалярного 
значения, характеризующего его свойства, например, энергия кадра. Строится 
кривая плотности вероятности этого значения, задаются пороги, за пределами 
которых кадр считается зашумленным и исключается из рассмотрения. Резуль-
тирующая спектральная плотность мощности формируется путем усреднения 
спектральной плотности мощности оставшихся не зашумленных кадров. На 
рис. 2 приведен пример плотности вероятности энергии сигнала, осложненно-
го локально-нестационарными широкополосными помехами, где кадры отчет-
ливо разбиваются на три статистические моды. Кадры, образующие первую 
моду, относятся к незашумленным, так как характеризуются фоновым уровнем 
энергии. Кадры, образующие  вторую и третью моды, зашумлены локально-
нестационарными помехами. 

Предлагается метод адаптивного определения порогового значения 
энергии кадров, выше которого кадры будут считаться зашумленными. Он ос-
нован на статистических оценках среднего и СКО распределения энергии 
микросейсмического сигнала с учетом минимизации влияния на смещение 
оценок среднего и среднеквадратического отклонения высокоэнергетических 
кадров.  
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Рис. 2. Плотность вероятности энергии сигнала,  
осложненного широкополосными  помехами 

На распределение энергии сигнала значительное влияние оказывают 
нестационарные узкополосные помехи, поэтому первоначально выполняется 
фильтрация узкополосных помех с условием сохранения временного пред-
ставления фонового микросейсмического шума. Для этого были разработаны 
методы фильтрации узкополосных и квазигармонических помех. Оба они 
требуют первичной оценки частоты узкополосной помехи, которую может 
дать анализ спектра Фурье с точностью до шага дискретизации. Для этого вво-
дится ρ -функция, которая принимает высокие значения iρ  в случае наличия 
узкого пика в спектре: 

 
( , )

( , )
i w

i
win i

Y med Y N
med Y N

ρ
−

= in i ,  
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где 2 2Re( ) Im( )i iY Y Y= + i , 

( , )winmed Y N  – функция медианного 

сглаживания спектра Y  с размером 
окна, равным . Имитационным 
моделированием было получено рас-
пределение 

winN

ρ -функции приведенное 
к соотношению «сигнал/шум» ампли-
туды гармонического сигнала и сред-
него уровня белого шума ( A / )  
(рис. 3). Также была исследована зави-
симость ч

S NA

увствительности ρ -функции 
к размеру окна winN  при различных 
соотношениях «сигнал/шум».

  
Рис. 3. Распределение ρ -функции 
спектра белого шума от соотношения 

«сигнал/шум» 
Форма реальной узкополосной помехи может значительно отличаться 

от формы гармонического сигнала, что приводит к уширению ее полосы час-
тот. Для фильтрации такого рода узкополосных помех разработан метод не-
линейной фильтрации узкополосных помех с сохранением фонового уровня 



шума. Метод заключается в 
подавлении частотного диа-
пазона узкополосной помехи 
и заполнении его копиями 
фонового шума с соседних 
участков спектра с целью 
выравнивания фонового 
уровня спектра. Данный ме-
тод позволяет фильтровать 
нестационарные узкополос-
ные помехи, однако имеет 
ограничения при фильтра-
ции близко расположенных 
узкополосных помех, рас-
стояние между которыми 
меньше 0.1 Гц. 

Рис. 4. Целевая функция при фиксированной 
частоте 

В большинстве случаев узкополосная помеха в микросейсмических сиг-
налах имеет незначительные отклонения формы от идеального гармоническо-
го сигнала. Такие помехи фильтруются оптимизационным методом фильтра-
ции квазигармонических помех с сохранением фонового уровня шума. Метод 
выделяет гармоническую компоненту в сигнале на основе того, что время кор-
реляции фонового микросейсмического шума составляет 1-5 с, а время корре-
ляции квазигармонической помехи много больше 5 с. Данный метод фильт-
рации осуществляет подбор параметров модели квазигармонической помехи. 
Модель квазигармонической помехи представляется в виде гармонического 
сигнала с параметрами: частота, амплитуда и фаза. Подбор параметров модели 
гармонического сигнала осуществляется на основе применения адаптирован-
ных к форме целевой функции оптимизационных алгоритмов, которые мини-
мизируют энергию результирующего сигнала после вычитания модели гармо-
нической помехи. На рис. 4 представлен пример целевой функции при фик-
сированной частоте.  
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Параметры амплитуда и фаза модельного гармонического сигнала чув-
ствительны к изменению параметра частота ( f ), поэтому необходимо опре-
делить f  с высокой точностью. Так, например, для гармонического сигнала 
(помехи) на частоте 10 Гц при ошибке определения частоты 410ε −=  Гц в сиг-
нале после фильтрации остается около 1 % помехи. Как правило, для получе-
ния параметра f с такой точностью хватает двух итераций алгоритма оптими-
зации целевой функции. В качестве критерия принятия решения о правильно 
подобранных параметрах модели гармонического сигнала выбирается 

1

( / )

k k

d

f f

N f
ε

−−
< , где  – номер итерации,  – размер кадра, k N df  – частота 



дискретизации. Далее производиться вычитание модели гармонического сиг-
нала из реального сигнала с учетом уровня фонового шума.  

На рис. 5 представлен пример спектров и динамических спектрограмм 
сигнала, построенных до и после фильтрации. Предложенный метод успешно 
отфильтровал все ярковыраженные квазигармонические помехи. Он позволяет 
фильтровать близкие по частоте узкополосные помехи с сохранением фоно-
вого уровня шума, являющегося полезным сигналом. 

 
Рис. 5. Пример спектральных характеристик микросейсмического сигнала:  
а) до фильтрации, б) после фильтрации. Слева – кумулятивные амплитудные 
спектры сигнала, справа – динамические спектрограммы (темные цвета соответ-

ствуют более высоким значениям спектральной плотности мощности) 

В четвертой главе предлагается метод параметрического оценивания 
аномалий (спектральных максимумов) и методика регистрации, позволяющая 
учитывать вариации параметров, описывающих спектральную аномалию при 
количестве одновременно наблюдаемых точек много меньшем общего числа 
точек наблюдения. 

Теоретическое описание явления низкочастотной аномалии предпо-
лагает, что она является следствием возрастания добротности геосреды над 
нефтегазовой залежью. Для оценки добротности , а также частоты Q F  и 
ширины спектрального максимума по спектральным характеристикам мик-
росейсмического сигнала предлагается метод оценки параметров спектральных 

W
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максимумов, основанный на оптимизации вейвлет-образа спектра. Алгоритм 
метода определяет координаты (частота 0f , масштаб вейвлета 0σ ) локальных 
максимумов вейвлет-образа, которые образуются из-за наличия спектральных 
максимумов в оцениваемом спектре Фурье. В качестве вейвлета выбрана вторая 
производная функции Гаусса («мексиканская шляпа»):  

2

2
2

2
2( , ) (1 )

2

fe ff e σϕ σ
σ σ

−
= ⋅ − ⋅

. 
Алгоритм определения координат локальных максимумов вейвлет-

образа реализован с учетом особенностей неравномерного распределения их 
плотности. Генерируется массив стартовых точек в плоскости ( , )f σ .  Для 
каждой стартовой точки, выполняется уточнение координат f  и σ  ближай-
шего локального максимума, с применением метода прямого поиска Хука-
Дживса. Несколько сконцентрированных вблизи одного локального максиму-
ма вейвлет-образа точек объединяются в одну с помощью применения кла-
стерного анализа.  Мера близости между двумя точками на вейвлет-образе оп-
ределяется как: 

( )
2

22 1
1 1 2 2 2 2 2 1

1 2

1 1( , , , ) log log
2
f f

l f fσ σ σ σ
τ σ σ

⎛ ⎞⎛ ⎞−
= + + −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

,  

где ( 1f , 1σ )  и ( 2f , 2σ )  координаты двух точек на вейвлет-образе, τ  – период 
вейвлета в отсчетах при σ =1.  

В результате работы алгоритма формируется сводная таблица, каждая 
строка, которой содержит оценку параметров 0f  и 0σ  одного из спектраль-
ных максимумов.  

Для спектрального максимума формы:  
2

0
2

0

( )2
20

0 02
0 0 0

0 0

( )
1 (( , , , , )

                             ( ; ] [ ; )

f f

S N
S N

N

f f
A e A fY f f A A

A f

σ , )σ σσ σ
σ σ

−
−⎛ ⎞−
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∈ −∞ − +∞I

, 

(где 0f  – частота, SA  – амплитуда спектрального максимума над фоном, NA  – 
амплитуда фона, 0σ  – полуширина основания спектрального максимума, 

 – соотношение «сигнал/шум», W  – ширина), аналитически было полу-
чено, что «добротность геосреды» по спектру можно оценить как: 
SNR

0 00

0 0 0 0
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1 1
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N Y Y
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A f f
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ϕ σ ϕ σ
σ ′

Δ ′ ′Φ = −∑ , ( )*( , ) ( ) ,Y
f

ff Y f f fχ σ χ σ
σ ′

Δ ′ ′Χ = −∑ . 

Параметр «частота спектрального максимума» F  равен 0f , параметр 
«ширина спектрального максимума» вычисляется как 01.252W σ= ⋅ . 

Неоднократные наблюдения за спектрами микросейсмических полей 
показали наличие вариаций параметров, описывающих спектральные анома-
лии, которые, заметны при сравнении кумулятивных спектров, зарегистриро-
ванных, например, в ночное и дневное время. Они связаны с глобальной не-
стационарностью фонового микросейсмического шума, а также вариациями 
аддитивной компоненты поверхностных шумов. 

Для условий временной нестационарности и пространственной неод-
нородности микросейсмического поля предлагается методика регистрации, 
позволяющая корректировать вариации параметров спектральной аномалии 
при ограниченном количестве одновременно наблюдаемых точек.  

 

 
Рис. 6. Пример схемы расположения точек регистрации  

микросейсмического поля 

Наблюдения выполняются в три уровня. На нулевом логическом уровне 
регистрируется вся площадь расстановками по n датчиков (где n – количество 
датчиков в комплекте, в данном случае 6). Проектируются точки повторного 
наблюдения. На первом логическом уровне выполняется регистрация в каждой 
точке повторного наблюдения методом иерархического объединения расста-
новок в блок. Каждый блок содержит n-1 точку повторного наблюдения.  На 
втором логическом уровне блоки  последовательно перекрываются со сле-
дующими по порядку блоками. Один из вариантов реализации схемы распо-
ложения точек регистрации микросейсмического поля представлен на рис. 6. 
Результатом вычислений являются поправочные коэффициенты, определяе-
мые для каждой точки наблюдения, учет которых позволяет выявлять про-
странственные изменения параметров аномалии. Для упрощения процедуры 
учета временных вариаций параметров спектральной аномалии был разрабо-
тан и реализован алгоритм автоматического вычисления поправочных коэф-
фициентов. 
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В заключении диссертации подводятся итоги работы и формулируют-
ся выводы основанные на анализе и обработке микросейсмических сигналов, 
зарегистрированных на исследуемых территориях общей площадью более чем 
150 км2 (больше 2000 точек наблюдения). 
1. Выявлен набор отличительных признаков, который позволяет качествен-

но и количественно выделить полезную компоненту сигнала на фоне тех-
ногенных и природных помех. Полезный сигнал локализован на участках 
микросейсмического сигнала с минимальной энергией, является шумом со 
временем корреляции 1-5 с, образован суперпозицией множества случай-
ных колебаний от удаленных некогерентных широкополосных источни-
ков. Спектр полезного сигнала содержит АЧХ геосреды, поэтому имеет 
мультимодальную структуру, которая состоит из спектральных максиму-
мов с шириной от 0.5 Гц до 3 Гц. Амплитуда полезной компоненты сиг-
нала зависит от влияния интенсивных источников помех. Наиболее ин-
формативными являются стационарные участки сигнала. Фоновый микро-
сейсмический шум, составляющий полезный сигнал, коррелирован в про-
странстве и имеет случайное азимутальное направление прихода домини-
рующей волны.  

2. Разработан комплекс методов фильтрации для задачи пассивного низко-
частотного сейсмического зондирования, в которой важен приоритет со-
хранения фонового уровня шума, включающий в себя методы фильтра-
ции локально-нестационарных и узкополосных помех. Для фильтрации 
локально-нестационарных помех предлагается метод адаптивного опреде-
ления энергетического порога для автоматической отбраковки высоко-
энергетических участков сигнала в условиях меняющейся интенсивности 
зашумления. Для фильтрации нестационарных узкополосных помех раз-
работан метод нелинейной фильтрации с сохранением фонового уровня 
шума, который основан на подавлении частотного диапазона узкополос-
ной помехи и заполнении его копиями фонового шума с соседних участ-
ков спектра с целью выравнивания фонового уровня спектра. Этот метод 
имеет ограничения при фильтрации близко расположенных узкополос-
ных помех, расстояние между которыми, меньше 0.1 Гц (для наиболее час-
то встречающихся узкополосных помех). Для фильтрации квазигармони-
ческих помех разработан оптимизационный метод фильтрации с сохра-
нением фонового уровня шума на основе минимизации энергии резуль-
тирующего сигнала после вычитания модели гармонической помехи пу-
тем подбора параметров модели гармонического сигнала частота, ампли-
туда и фаза.  

3. Разработан метод оценки параметров спектральных аномалий, на основе 
определения локальных максимумов вейвлет-образа спектра микросейс-
мического сигнала, который позволяет численно оценить информативные 
параметры (частота, ширина и «добротность» аномалии) и автоматизиро-
вать процесс параметризации в технологии НСЗ. Анализ оцененных па-
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раметров спектральных аномалий по наблюдаемой территории позволяет: 
1) визуально оценить характер распределения значений параметров, обра-
зующих кластер; 2) отделить устойчивые по территории наблюдения 
спектральные аномалии от случайных; 3) автоматизировать построение 
физических полей значений параметров аномалий; 4) численно сравнить 
параметры аномалий между различными территориями. 

4. Предложена методика регистрации, позволяющая учитывать временные 
вариации параметров спектральных аномалий при ограниченном количе-
стве одновременно наблюдаемых точек в условиях временной нестацио-
нарности и пространственной неоднородности микросейсмического поля 
для выявления их пространственных изменений. Предложен алгоритм ав-
томатического учета временных вариаций параметров спектральной ано-
малии, который в несколько раз ускорил вычисление поправочных коэф-
фициентов на этапе обработки. Поправочные коэффициенты для пара-
метра «добротность» аномалии варьируются в пределах от 0.3 до 3.  
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