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A general characterization of the work 

The work is the actual. When finding the spectrum of many-particle 

systems almost always use single-particle approximation, i.e., it is assumed that the 

state of each electron can be described by a wave function. In this case, the range 

and system status can be found in both extremes of the functional medium of the 

Hamiltonian of such a system. The wave function of the system is naturally 

represented as a superposition of Slater determinants of some composed of the 

desired particle functions. As a rule, these single-particle function orthonormality 

conditions are imposed. At the same time it is clear that a functional condition 

orthonormality particle functions and the lack of orthogonality conditions particle 

functions are different functionals and in general must have different extremes. In 

the V.A. Fock [1] noted that taking into account the excited configurations should 

require only a partial orthogonal orbitals. A number of studies, for example, [2, 3] 

the issue was studied by numerical solution of the Hartree - Fock approximation 

for the simplest configurations under different conditions with respect to 

orthogonal radial orbitals. It was concluded that the more the orthogonality 

conditions, the results are worse. Further development of the theory and practical 

application of the method of self-consistent field Hartree - Fock orbitals using 

orthogonal delayed because of mathematical difficulties. This applies to the 

calculation of the matrix elements of the operators in the Slater determinants 

constructed using a partially orthogonal orbitals and to computing in solving the 

equations themselves Hartree - Fock on such determinants in the coordinate 

representation. 

Since the studied systems are almost always identical particles systems, it 

was natural to try to develop a method of second quantization as in the case of an 

orthonormal one-particle basis. In [4, 5] was an attempt of the second quantization 

method with a partially non-orthogonal single-particle basis for fermions. In these 

works, "bra" dual-vector basis are not Hermitian conjugate to the "cat" the vector 

and as a result of one- and two-particle operators are not Hermitian. 

Anticommutator creation and annihilation operators orbitals unlike ordinary 
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Kronecker symbol, receive equal to the corresponding overlap integral. Because of 

this, there are difficulties with the normalization of many states, etc. and any 

application of the proposed method of second quantization to the real system was 

no question of the so-called "non-orthogonality catastrophe" remains open. Thus, 

the problem of finding the exact form of Hermitian operators in second 

quantization representation with a partially non-orthogonal single-particle basis 

remained unsolved. 

All of the above points to the relevance of the topic of the dissertation. 

The work is the purpose. 

The aim of this work is the construction of the second quantization method 

with linearly independent, non-orthogonal single-particle basis. At this stage, we 

considered the application of this method to a system in which is possible to use 

perturbation theory. These systems can be classified as ionic crystals. The main 

objects of study are impurity centers, with unfilled 3d- and 4f-shells, namely ligand 

hyperfine interactions (LSTV) in them. 

Problems in the interpretation of experimental data LSTV arise even for ions 

of the iron group. Application of the standard variant of the method of molecular 

orbitals in some cases is difficult. Among the impurity centers with unfilled 3d-

shell these include: paramagnetic centers with missing-bond complexes with 

orbital degeneracy, and a large class of systems with lower symmetry. In the case 

of rare-earths difficulty increases as the wave function of the ground state, as a 

rule, it is the sum of Slater determinants, so the calculation in the ordinary 

(phenomenological) scheme of molecular orbitals become is extremely time-

consuming. 

Furthermore, made for Gd
3+

 ions calculation parameters of the spin density 

transferred to the core ligands, with the replacement of the wave functions of 

electrons in the 4f-related molecular orbitals, even the sign do not agree with the 

experimental data. This raises the problem of the account of the spatial distribution 

and even the outer electron shells. However, the overlap integrals 6s-, 6p- and 5d-

shells with ligands are big enough. This raises the problem of convergence of 
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series with non-orthogonal integrals. This problem first arose in the theory of the 

chemical bond and is called "non-orthogonality catastrophe." It is known more for 

the work of Slater, but has remained unsolved to this day. 

The defense is the provisions. 

1. The expressions for the single-particle and two-particle operators in 

the second quantization method with linearly independent, partially non-

orthogonal single-particle basis have been obtained. Operators have the form of a 

series of n - th powers of the commutator the operator Q c operator H
-
 with 

coefficients cn = E2n / [2
2n

 (2n)!], Where E2n are Euler numbers. The matrix 

elements of the operator H
-
 are a linear combination of matrix elements of the 

Hamiltonian H system. The coefficients of this linear combination are expressed in 

terms of matrix elements of the matrix (I+S)
-1

, where I - the identity matrix, and S - 

the matrix of the overlap integrals of the selected single-particle basis. The matrix 

elements of Q is also expressed in terms of matrix elements of (I+S)
-1

. For the 

convergence of the resulting series requires only the limitations of the matrix 

elements of n - th degrees commutator. 

2. Solved the problem of "non-orthogonality catastrophe." These general 

expressions do not operate with a series of powers of the overlap integrals as a 

sufficiently large set of basic functions needed for the interpretation of the 

experiment, these series are divergent. At the same time, in the case of 

convergence of the overlap integrals sufficiently limited basis (taking, for example, 

as a probe) results obtained using the new formulations and old method 

coincidence. 

3. A generalization of expressions for the amplitudes of the electron 

transition metal-ligand (analog covalency parameter in the method of molecular 

orbitals) allowing to calculate their values without assuming smallness of the 

corresponding overlap integrals. The proposed expressions for the transition 

amplitudes explain the closeness of the experimental values of the ligand hyperfine 

structure of impurity centers Yb
3+

: CsCaF3 and Yb
3+

: Cs2NaYF6, despite the fact 
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that the Yb
3+

 ions are introduced in different crystals, and in one case replacement 

isovalence and the other nonisovalent. 

4. The operators of the effective interaction spin and the orbital moments 

of paramagnetic ions with neighboring nuclei of diamagnetic ions are obtained. It 

demonstrated the importance of integrating the virtual processes of charge transfer 

from the diamagnetic ions into the empty 5d-state rare-earth ions. The role of 

external polarization filled 5s- and 5p-shells. A mechanism for the creation of an 

extra field in the nuclei of the ligands associated with the action of the virtual 

excitation of the electric field from the hole on the ligand. 

5. It has been demonstrated that the development of theory and proposed 

mechanisms transferred magnetic fields on the nuclei of diamagnetic ions are 

explains the main features of the formation of the local fields in the fluorine nuclei 

in a number of fluorides: Yb
3+

: CsCaF3 and Yb
3+

: Cs2NaYF6. 

6. The values of the local magnetic fields in LaMnO3, enriched isotopes 

17O, in different types of cooperative orbital ordering of the ions Mn
3+

. The 

best agreement with experiment is obtained under the assumption that the 

cooperative ordering eg subshell electrons are in states with the wave 

function of the form 22

2

22

1
3 yxcrzс   (in the local axes defined 

octahedral fragments MnO6). So, at T = 298K coefficients are: c1 = 0.995, c2 

= - 0.10. The importance of quantum interference effects is proportional to 

the product of c1c2. Thus, based on the experimental NMR data in 

collaboration with experimentalists work uniquely identified ground state 

wave function of ions Mn
3+

, and thereby established the cooperative 

structure of orbital ordering in this compound in the paramagnetic phase.  

The safe and innovate.  

All the results of the thesis were obtained for the first time, its 

conclusions proved the reliability of the analytical methods, the agreement 

with the theoretical results obtained up to the squares of the overlap integrals 

in the early works, the agreement with the experimental data. 
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The values are scientific and practical. 

The resulting expression for the effective operators transferred 

hyperfine fields on the nuclei of magnetic ions nearest diamagnetic anions 

useful in any crystal symmetry and the presence of orbital degeneracy of the 

ground states of magnetic ions. On concrete examples demonstrated that the 

developed method of secondary quantization partially non-orthogonal 

single-particle basis to successfully explain the main features of the existing 

experimental data obtained by electron-nuclear double (in the case of 

impurity centers) and nuclear magnetic resonance (for the crystals with high 

magnetic concentration). 

Compact expressions are derived for the calculation of the Coulomb 

interaction of the electrons with the basis of their spatial distribution within 

the crystal lattice. The formula for the Fourier transform of this interaction 

has the translational symmetry of the crystal lattice. 

Test of the works. The main results were reported «XIX International 

Seminar on Modern Magnetic Resonances, RAMIS» (Poznan-Bedlewo, Poland, 

2001), «XI-th Feofilov symposium on spectroscopy of crystals activated by rare 

earth and transition metal ions» (Kazan, Russia, 2001), «European Conference 

Physics of Magnetism» (Poznan, Poland, 2002), «XII All-Russian Conference. 

Optics and Spectroscopy of Condensed Matter» (Krasnodar, Russia, 2006), 

«International conference. Modern development of magnetic resonance» (Kazan, 

Russia, 2007), «International conference. Modern development of magnetic 

resonanc» (Kazan, Russia, 2007), «XV All-Russian Conference. Optics and 

Spectroscopy of Condensed Matter» (Krasnodar, Russia, 2009), «XIV 

International Feofilov Symposium. Spectroscopy of crystals doped with rare earth 

and transition metal ions» (St.-Petersburg, Russia, 2010), «VII International 

Conference. Fundamental problems of optics "(St. Petersburg, Russia, 2012), 

«Actual problems of magnetic resonance and its application. XV International 

Youth Scientific School» (Kazan, Russia, 2012). «XV International Feofilov 
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Symposium. Spectroscopy of crystals doped with rare earth and transition metal 

ions» (Kazan, Russia, 2013). 

The works are the publications. 

The main results of the thesis were published in 17 articles in Russian and 

international journals included in the database SCOPUS (15 journals included in 

the list of VAC), as well as in the materials and theses of the above conferences. 

The contribution is the personal. All the theoretical results presented in the 

dissertation were obtained by the author. 

The dissertation is the structure and volume. The dissertation consists of 

an introduction, six chapters and a conclusion, stated on 191 typewritten pages, 

contains 3 figures, 2 charts, 18 tables and 3 appendices. Bibliography contains 100 

references.  

The dissertation is the content. 

In the introduction the actuality of the topic, a brief overview of the current 

state of the problem, the study aim, set the tasks of work. The statutes is the 

defense. 

The first chapter discusses the results of [A1-A7], [6-11], which were 

obtained by the "approximate second quantization", in which the operators in the 

second quantization obtained up to the squares of the overlap integrals. It is 

emphasized that, even considering the covalence as adjustable parameters, without 

the involvement of new mechanisms for the formation of local magnetic fields at 

the nuclei of diamagnetic ions, it is impossible to explain the available 

experimental data on LSTV impurity centers. This is particularly clearly seen in 

the case of rare-earth compounds. 

However, the implementation of this the program, is arise a number of 

fundamental problems. This is actually articulate statement of the work. As an 

illustration, we present some qualitative assessment. We write the Hamiltonian of 

the ligand hyperfine interaction HLSTV, i.e., operator of the interaction of the 

impurity ion effective spin with the nuclear spin of the ligand selected through 

isotropic As and Ap anisotropic constants, respectively. 
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    2ЛСТВ s p z z x x y yH A A S I S I S I   SI , где 

   i i

s s nls s

i

A c f a ,         
2

2

16
0

3
s n n sa g


  , 

p p dA A A  ,            
3

2 n n
d

g
A

R


  

 i
nlsf  – density of the spin; nl , s –  orbital  

quantum numbers of ions. 

The sign 
 i
sc  can be both larger and smaller 

Zero is depending on the mechanismthe  

emergence   of spin density. 

 

Fig.1. the impurity center is the model.  CsCaF3: Yb
3+

. 

The above operator of the interaction is one of the selected pairs of Yb
3+

 - F- and 

recorded in the local coordinate system with the z axis along the axis of the pair. 

The observed value Ap is markedly different from the magnetic dipole-dipole 

interaction of the impurity ions with the core of the ligand, which clearly points to 

the manifestation of the effects of covalency.   

            i i i i i i

p nl nl nl p

i

A c f c f c f a     
    ,   

3

2

4

5
p n n p

a g r  .  

The process of forming a covalent bond corresponding 4f-electron to 2p (2s) 

- electrons fluoride (
 i
sc > 0) is fig. 1.1. 
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Fig. 1.1 The transferred hyperfine field on the nucleus of the fluorine is 

resulting in formation of a covalent bond.  

In the case of the impurity center KMgF3: Tm
2+

, Yb
3+

 and S = 1/2, it is 

decisive. [8] These numbers refer to the sequence of statements in the amendment 

of the second-order perturbation theory. 

It is seen that the magnetic field produced by the electron remaining on the 

nucleus of the ligand has the same sign as the field produced by the electron of the 

central ion, i.e., isotropic constant As > 0, as is observed experimentally. 

Diagram 1.2 Process involving the overlying unfilled shells (
 i
sc  < 0).  

 

Fig. 1.2 Contribution to transferred hyperfine field of the transport processes 

in the empty shell 5d- or 6s-shell configuration 4f
7
. 

The diagram 1.2 shows that the magnetic field generated by the remaining 

electron on the nucleus is the opposite sign of the ligand field produced by 

covalent contribution. The energy transition in 5d-, 6s-shell more energy transfer to 

the valence shell. Note, however, that the overlaps 5d-, 6s-shells with ligand orbital 

is considerably greater the overlap with the valence 4f-shell. Furthermore, unlike 

covalent contribution, wherein the selection rules is only possible transition 2s - 

4f0, in processes involving the empty shells seven orbital configuration 4f
7
. Thus, 

the process diagram 1.2 can explain the negative value, which is observed 

experimentally in the case of impurity centers CaF2: Eu
2+

, Gd
3+

 and S = 7/2 [12]. It 
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is easy to see that the process beginning with the transition of an electron spin 

direction opposite to that shown in Figure 1.2, is forbidden by the selection rules. 

At the same the following problems are raises for multi-configuration 

approach:  

 overlap integrals 6 , 6 , 5p s d   , etc., where   - orbitals of 

the ligands are not small, and the series of non-orthogonality are 

divergent,  

 "non-orthogonality catastrophe" - the large number of particles and the 

orbitals. So even with a relatively small non-orthogonality integrals 

series do not converge.  

For the first time it was mentioned in the works of Slater. 

Accordingly, the purpose of the work can be summarized as follows: 

a) develop a method to carry out calculations for arbitrary non-

orthogonality integrals; 

b) avoid disaster "non-orthogonality catastrophe", i.e. determine the 

criterion the possibility of using of a single-particle basis; 

c) to construct a theory ligand hyperfine interactions with exact 

allowance for the effects of non-orthogonality, taken in the framework 

of the basis, in each order of perturbation theory. 

The second chapter is the main. It discusses the difficulties 

encountered when trying to calculate the matrix elements in the Slater determinants 

composed of the non-orthogonal basis orbitals in the coordinate representation. 

Shows how can be eliminated "non-orthogonality catastrophe." 

Section 2.2 the operator of the creation and annihilation of electron 

orbitals in the non-orthogonal basis satisfying the usual fermion relations are 

introduced, i.e. 

a a a a     

    , 0a a a a a a a a       

   

       , 0 0a 
 

(5) 

and input function 

 
 

1 2 1
0 ...

N N
a a a a   


 ,     

1 2 1
... 0 .

N N
a a a a   



   
 

(6) 
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It is shown. Let us    ,    are the Slater determinants with non-

orthogonal basis of the orbitals and with the quantum numbers    ,  . Then the 

matrix element is  

     1 2 1 1 2 1

ˆ0 .   .. ... 0 ,
N N N N

h a a a a h a aa a          

       
 

(7) 

where h   single-particle operator, and the operator ĥ  has the form: 

 

ˆ exph N a a a a h   

 

    

 



  
    

   
 

 

(8) 

and similarly g   two-particle operator, and the operator 

 

 

1
ˆ exp ,

2
g N a a a a a a g     

 

      

  



  
     

   
 

 

(9) 

where N is a normal product. 

In section 2.3, using the results of the preceding paragraph shall be considered an 

integral overlap between Slater determinants    and    which can be 

calculated by the formula: 

   
1 1

0 exp 0 . 
i i

N N

i i

a N a a a    
 

  



  

      
         

      
  

 

(10) 

It is shown that the operator belongs in (10) can be represented as: 

 

 exp expI N a a Q 

 

 





  
   

  
 , (11) 

where an operator Q  is defined by the following expression: 

 
 

1

1

1
ln

n

n

n

Q a a S a a I S
n

      




 

 




      , (12) 

The matrix elements S      are the matrix elements of S  the overlap 

matrix, composed in the basis of one-electron orbitals. The definition is not based 
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on a matrix usually involves some type of operator of the Taylor series [A11]. We 

present  ln I S  in the form of an integral, which is then recorded by the sum of: 

 

     
1

1 1

10

ln
N

i

i

I S S I S d S I S   
 



      , (13) 

where  
1

iI S


  the matrix is inverse to the matrix  iI S  , /i i N   . 

The expression on the right side of (13) is an integral sum of this operator. It exists 

always, when  
1

I S


  is an inverse matrix. At the same time, the determinant of 

the  I S  matrix, in the case of the choice of basis of linearly independent 

functions, positive and not zero, as is the Gram determinant [13]. It is easy to show 

by direct calculation that if the series (12) converges, it is already at a value equal 

to 10
6
 and 

610    the matrix elements of both notions coincide up to 8-10 

decimal places. Thus, always  ln I S  is defined and does not depend on the 

magnitude of overlap integrals, if the selected basis is linearly independent system 

functions. 

A simple example illustrating the above method for eliminating non-

orthogonality catastrophe is given in Annex I. 

In section 2.4 is found in the form of an arbitrary operator in the many-

particles of orthonormal basis functions. The many-electron system of orthonormal 

functions as follows. In the matrix form it can be written as: 

 

1
exp ,

2
Q

 
   

 
Ψ Φ

 
(14) 

where Ψ  and Φ  row matrix. The method of constructing the system of 

functions (14) is called symmetric orthogonalization [14], but is now held in the 

operator form. It is shown that the matrix element of the single-particle and two-

particle operators on the wave function (14) can be calculated by the formulas: 

         ,H H
 

 
  

 
(15) 
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1 1
exp exp .

2 2
H Q H Q

   
      

     
(16) 

Here 

 

1
,

2
H a a h a a a a g          

  
    

 
 

 
 

1
,h I S h     


  

 
 

   
1 1

,g I S I S g        
 

     
 

 

 
1

I S 


  is the matrix element of the matrix inverse to the matrix  

 I S . 

In section 2.5 is found the form of the operator H  in the form of a series. The 

expression (16) includes a non-Hermitian operator and, in addition, the operator is 

in the exponent. Work directly with an expression difficult. Therefore, it is 

desirable to write it in the form of a convergent series, all members of which would 

represent Hermitian operators. It is shown that the operator H  can be represented 

as: 

 

2

0

,

n

n

n

H c Q H






     ,       
 

2

2
,

2 2 !

n
n n

E
c

n


 

(17) 

2 1E   , 4 5E  , 6 61E   , 8 1385E  , 10 50521E   , 12 2702765E  , 

14 199360981E    . The numbers E2n are numbers Euler.  

1
,

2
H a a h a a a a g           

  
    

 
 

 
 

11
. .,

2
h I S h h c     


   

 
 

   
1 11

. .
2

g I S I S g h c        
 

      
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For the convergence of the series (17) is sufficient to set of matrix elements 

of the operators 
2

,
n

Q H    has been limited. The expression show fast 

convergence for the coefficients cn. For the example, 
7

7 1.39576 10c   . 

In section 2.6 is found form of the operator the number of particles in the 

developing formalism. It is shown that the particle number operator has its usual 

form: 

 
.N a a 



   
(18) 

It is also noted that the analysis and transformation, similar transformation 

given above, show that the expression (17) retain their shape and bosons. This 

requires that the creation and annihilation operators satisfy the boson commutation 

relations: 













 aaaa , 0 









 
aaaaaaaa , 

and the all calculations were carried out on the so-called permanents, i.e. 

symmetrized with respect to the pair of permutations of products of single-particle 

orbitals. Then, in the notation of this work the functions 
 

should be:  
 

 

 
 

0 ,
!

n

a

n





 






 

 

here 


n  is the number of filling orbitals. 

The third chapter deals with the mechanisms that lead to the spin density 

on the ligand. Conclusion of second-quantization, taking into account virtual 

transitions of electrons in the impurity center, carried out following [15]. 

In section 3.1 the perturbation theory for the case where the main level of 

the zero approximation is degenerate or quasi-degenerate is considered [16] and 

annexed to the problem solved in the dissertation. If the zero-particle basis using 

orbital Hartree-Fock approximation, the perturbation operator is written as: 

 

 1

1

1 1

2

N N

i

i j iij

H U r
r 

   . (19) 
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The operator  iU r  has chosen from the condition exclusion the parameters Raka 

F
(0)

 for a one-center interaction and the matrix elements of the direct Coulomb 

interaction for the two-center interaction. The expression  iU r  commonly used 

(see an example. [15]) solves this problem only partially. This section provides the 

operator in the second quantization, which satisfies the required conditions.  

In section 3.2 discusses the processes of transition of an electron from the shell of 

the ligand to the shell of the central ion, which define a covalent bond to the 

impurity center. The operator describing these processes will be: 

 1

1 1

4 2
V a a q q        




  

   

 
1

2
v            , (20) 

  lnq I S  ,  
1

I S   


  ,   ,
/G  

     , 

G G    is the amplitude of the transition of an electron from the ligand to 

the central ion,   , 
  is energy transfer system from the ground state to an 

excited state.  

In section 3.3 discusses the following third-order process. An electron from a 

ligand transfer to the valence shell of the central ion, then the electrostatic field 

occurring holes on the ligand, i.e., electron-hole interaction is transfer into one of 

the overlying orbital   and returns. Effective operator describing these processes 

is  

 2

1 1

4 2

ehh
V a a  



 
      

 


  

   

1
1 . .,

2
v h c



  



      

 
       

 
 (21) 
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 ,  are the quantum  numbers of orbital valence shell,   are the orbital 

quantum numbers of empty shells,  ,  is the quantum numbers of the ligand 

orbitals, ehh  is the operator of electron-hole interaction. In the dissertation also 

noted is the possibility of building operators and the diagram method.  

In section 3.4 the next process of the emergence of spin density on the 

ligand is considered. An electron from a ligand enters the overlying empty shells 

 ,   of the central ion. Because of the exchange interaction with electrons of 

the valence shell, the electron transition amplitude of the spin-up and spin-down 

will be different. This gives rise to a non-zero magnetic field at the nucleus of the 

ligand. The operator of these processes has the form:  

 
 

3

1g P
V a a 



  



 



   

 
1

. .
4

v h c         

 
    

 (22) 

In section 3.5 the following process is considered the third-order 

perturbation theory. The corresponding operator is denoted by V4. An electron 

from a ligand goes to the valence shell of the central ion. Then the electron-hole 

interaction is transfer into a different orbital and the electron returns. This process 

can be compared with the polarization of the ligand: 

4

1 1 1

4 2 2
V a a            

 


    

   

 . .,ehh
v h c 



 
     

 (23) 

The orbital quantum number  ,  is the valence shell. , ,    is orbital 

quantum number of the ligand, heh is the operator of electron-hole interaction. It is 

evident that the operator V4 is an amendment of the next order to the operator V1. 

Shape operator also can be determined by the diagram. 
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In section 3.6 considered LSTV contribution to due process core 

polarization on the central ion. Effect of the core polarization on the hyperfine 

structure of the impurity ions has been discussed for a long time [17, 18]. The role 

of the central ion core polarization in the formation of the ligand hyperfine 

structure by "approximate second quantization" was investigated in [19]. In [A11] 

the effect of polarization in the core of the central ion ligand hyperfine structure we 

evaluated following [19]. Then, in the framework of the method developed in this 

dissertation, we received the following statement, taking into account the processes 

of core polarization [A12]:  

   
 2

5

1
1

42
V a a g P q q 



   
     



 
    

   

 
1 1

. .,
2 2

G G
v h c

 

 

 

 

       


   
  

 (24) 

G

  is the amplitude of the transition of the electron orbitals with ligand 

  on the vacant orbital  , belongs to the basic configuration, provided that the 

former empty orbitals   it is an electron. 

It is evident that the expressions obtained are substantially different from 

those obtained previously in calculations to within squares overlap integrals. The 

main difference is the renormalization of the product of various two-center 

integrals and covalence parameters. It is especially important to consider when 

determining the parameters of a covalent bond with the ligands on experimental 

data LSTV. 

In the fourth chapter the amplitude of the transition of electrons between 

the ions and given expression for the spin densities are considered. 

In section 4.1 the expressions for calculating the amplitude of the transition 

of an electron from the ligand to the valence shell of the cation are suggested. The 

impact of the effects of non-orthogonality to the transition amplitude is determined 

by the nearest environment. The crystal lattice outside the first coordination sphere 
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will be taken into account in the ion approximation. Then the one-particle 

Hamiltonian can be written as: 

 ,

,a b i
k

b i a ba b i

Z Z q
h h



   
  

 
r R r R r R

 

(25) 

kh  is the kinetic energy operator, ,a bZ Z  are the charges of the nuclei of the central 

ion and ligand, respectively, iq  are charges of ions in the host crystal. 

The charge of the nucleus of the ion we write as: Zi = qi + ni + mi, where ni the 

number of electrons of i - th ion to the present configuration, the number mi - call 

charge defect and it is different from zero, if the charge is implanted ion is 

different from a charge qi. Then mi > 0 corresponds to a shortage, and mi < 0 an 

excess of electrons. For the transition amplitude we obtained the following 

expression [A11]:  

   1
2 1 1e

e

q

e e e eG g P



        


   



 

 

 

 1
b

b b
b b b b

b

n m
h g P

 

     



   




r R
 

 

 

   1 1b

b

q
b b b bg P



       
 

 

 

 1
e

e e
e e e e

e

n m
h g P

 

     



    

 


r R
 

 

 

   1
e

e e
k e e e e

e

n m
h g P



           


     


r R
 

 

 

 1 ,
b

b b
b b b b

b

n m
g P



     


   
 


r R

 

(26) 

where the sum of the orbitals of the central ion indicated by the letter e, and on the 

ligand orbitals index b, 
1eq




 and 
bq

  energy Hartree-Fock of the electron on the 

orbital   on the central ion and ligand orbital  , respectively. The value of: 
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i

i a i

q
h  



 



r R

,
i

i b i

q
h  



 



r R

,
i

i i

q
h   




r R
, (27) 

h  is coulomb interaction energy of the electron on the orbitals   of the central 

ion with an infinite lattice, taken ionic approximation, h  is energy on the ligand, 

ne + me, nb + mb is the number of electrons and charge defects in the basic 

configuration of the central ion and ligand, respectively. 

In section 4.2, the expressions for the amplitudes of the transition of an 

electron from a ligand to the unfilled and filled, in the basic configuration, of the 

shells of the central ion are obtained. The conclusions of these expressions are 

similar to the findings of the amplitude in the valence shell. Where G G    

is the amplitude of the transition of the electron from the orbitals of the ligand     

to the orbital  , empty shell in the basic configuration, G G 

    is the 

amplitude of the transition of an electron to the vacant orbital of the filled shell.  

In section 4.3, the expressions for the contributions of the considered 

processes are recorded through spin density [A11], just as it is done, for example, 

in [20]. Let us the q q    and p   . Then, the spin density can be 

written as follows. 

For example, for covalent contribution, i.e. operator V1, we have:  

  

 1 2 2
4 4 4 4

1

4
fi fi fi fifif q p     ,    , ,i s   , (28а) 

 
 1

4 4 4 4 4 4 4 4

1 1 1

4 2 2
f f f f f f f fff q q p p               . (28б) 

 

The designations , ,s    correspond to those adopted in the theory of 

covalent bond [20]. Spin density corresponding to the processes of excitation of an 

electron from the central ion induced electron-hole interaction and describes the 

operator V2, written as follows: 
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  42

5 4 5 4 5 4 5 4

54

1 1 1
1

4 2 2

firi
di di fi di fi di fi di fi

difi

h
f p p p p   

 
            

 (29а) 

  , ,i s   . 

  4 ,22

5 4 5 4 5 4 5 4

4 ,2 5 ,2

1 1 1
1

4 2 2

f p

d d f d f d f d f

f p d p

h
f p p p p
           

 
          

, 

 
     2 2 2

d d df f f    , (29б) 

 2

df   is obtained from expressions 
 2

df   permutation of the indices  and  . 

The contribution to the spin density due to the polarization of the ligand, i.e., 

corresponding to the operator V4, is written as:  

 4
4 4 4 4 4 4 4 4

4

1 1 1

4 2 2

l s
f fs f fs f fs f fsf s

fs

h
f p p p p

       
 

    
  

. (30) 

Similar expressions are obtained for the deposits associated with other 

processes. 

Thus, the contributions of the processes under consideration for the series 

rare-earth elements and transition metal will be expressed through the introduction 

of this section the spin density. 

In the fifth chapter the expressions for calculating the matrix elements of 

the operators belonging to the amplitude of the transition of electrons between the 

ions are obtained. 

In section 5.1, we obtain expressions for the matrix elements of the 

Coulomb interaction between the electron and the charge, fixed at some point in 

space, and allows computing on the orbitals belonging to different ions.  

Let us the radial part Rnl of ion orbital  nlm r  is an expansion of the 

Gaussian type orbitals (GTO):  

 
 2exp rraR i

l
inl  . (31) 

This expansion, as we know, is extremely convenient for the calculation of 

two-center integrals [21]. However, in contrast to the method of calculation 

described in [21], we do not use the pre-conversion of the Coulomb interaction 
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operator to its Fourier transform. In the proposed method of calculation the 

formula for the two-center matrix elements are more compact. 

Let the first ion is in the site with the radius vector R0 + rj, R0 = 0. The 

second ion in the site with the radius vector rb. In the site with the radius vector Rn 

+ rp, where Rn is the radius vector n-th unit cell of the crystal, it is a charge  qp and 

rp is the radius vector of ion in the unit cell. Then, as shown in [A9], the matrix 

element is the form:  

 

 
 

 p
j b

n p

q
     

 
r r r r

r R r
 

 

 and it can be expressed in terms of functions:  
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 
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 
2 2 2

0exp exp ,i k
ik

ik

u
 




 
      

 
R c r

 

(32) 

where [ns/2] is the integer part of the number in parentheses; 

01 0 02 0 03 0, ,x x x y x z    is coordinates of vector 0 b j r r r ; ik i k    , 

0 /s k s ikc x   is coordinates of vector c ; 1 2 3, ,x y zR R R R R R    is coordinates 

of vector  n j p  R R r r . For example, the matrix element is calculated on the 

functions  zp r  will be: 

 

       0 0

3
002 001

2

p
z z

q
p p F z F     

r r r
r R

. 

 A calculation by the formulas (32) does not require special programming and 

can be easily calculated in user mode, such as the program "Mathematics".  
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In section 5.2, the expressions for calculating the single-center and two-

center matrix elements of the form (27) are obtained. They included in the 

expression for the transition amplitude [A13]. The matrix elements of the 

operator's HLR are determined: 

     
 

 
,

,
p

j LR b j b
n p n p

q
H            

 
r r r r r r r r

r R r
 (33) 

Sum n is the sum taken over the unit cells of the infinite crystal lattice, and the sum 

of p sum taken over the ions in the unit cell. Unlike Ewald method [22], in the final 

expressions the sum is just sum taken over the reciprocal lattice vectors. 

Results: that the matrix elements of the form (33) can be expressed over functions:  

 

3 3

2 2
2

1 2 3 1 2 3 0

2 1
! ! ! exp i k

jb i k

c ik ik

b
F n n n n n n a b
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 
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   
      

   
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     
 

 
2

1 2 3 2
, , , exp exp ,

4

j
jb x jb y jb z

ik

G
f n g f n g f n g i



 
      

 


gg
gc

gg
 (34) 

 sjb gnf ,  is the polynomial of degree n and gs is the component of the reciprocal 

lattice vector g. Example, 

  31 1
3,

3! 4
jb s s s

ik

f g Z Z


  ,    4 2

2

1 1 1
4, ,

4! 8 32
jb s s s

ik ik

f g Z Z
 

     

0 / / 2s k s ik s ikZ x ig    .  The value  jG g  is the structural factor, which 

depends only on the radius vector rj, and the reciprocal lattice vector. 

Thus, all the matrix elements of the HLR can be calculated for the s-, p-, d- and f-

orbitals of the ions. 

In section 5.3, the expressions for the one-center matrix elements of the operator 

HLR for the s-, p-, d-electrons selected ion [A14] are obtained. The matrix elements 

of this type arise when calculating transition amplitudes in the 5s, 5p, and 5d shell 

of rare earth ions, as well as the transitions of electrons in anion-cation LaMnO3. 

In the case of the s-electron matrix element is the interaction energy of the s-

electron and is determined by the formula:  
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 
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 
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g
 (35) 

where cv  is the unit cell volume, , ,a b c  is the lattice constants,  jG g  is the 

structural factor, jq  is the charge of the substitutable ion. For example, in the case 

of p-electrons to the off-diagonal matrix element functions px, py is:  

 
3 7

22 2

2
, 0

3 1
exp .

4 4

j

LR i k x y

i kc ik ik

G
x H y a a g g

v



 

   
    

   
 

g

g g

g
 (36) 

In section 5.4, the expression for the matrix elements of the operator's HLR 

which are part of the transition amplitude of an electron from the anion to the 4f-

shell of a rare-earth ion [A16] were obtained. For example, the matrix element: 

     
4

105 1
, 2 , 2 402 042 2 222 3 .

16
LR j j j j i k

ik

f H f F F F q a a


 
       

 
  

Annex II. The general expressions for the calculation of two-center matrix 

elements of the Coulomb interaction of the electrons, necessary for calculating 

transition amplitudes, are obtained. 

Annex III. The formulas for calculating the overlap integrals, direct, hybrid, 

exchange of the Coulomb integrals, using the results of Annex II are obtained. All 

calculations are done in user mode, such as the program, "Mathematics". 

In the sixth chapter of the calculated tensor LSTV impurity centers Yb
3+

: 

CsCaF3, Cs2NaYF6 and 
17

O: LaMnO3. 

In section 6.1 the general expression for the amplitude of the transition of an 

electron in the valence shell are specified for the impurity center Yb
3+

: CsCaF3. The 

numerical values of the matrix elements needed to calculate these amplitudes are 

obtained. For the amplitudes following values were obtained: 

 
4 0 2 0.01465f G s  , 4 0 2 0 0.01738f G p  ,

4 1 2 1 0.007943f G p  
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In section 6.2 of the general expressions for the amplitudes of the transition 

of an electron to the 5d and 6s are specified for the shell of the impurity center 

Yb
3+

: CsCaF3. The numerical values of the matrix elements needed to calculate 

these amplitudes are obtained. For the amplitudes following values were obtained: 

 
5 0 2 0.2293d G s   , 5 0 2 0 0.1133d G p   , 

5 1 2 1 0.06164d G p  ,  

 
6 2 0.4642s G s   , 6 2 0 0.1293s G p   . 

In section 6.3 the general expressions for the amplitudes of the electron 

transition in the 5s and 5p shell are specified for the impurity center Yb
3+

: CsCaF3. 

The numerical values of the matrix elements needed to calculate these amplitudes 

are obtained. The amplitudes 5 6

5 5 0.003d s

ss ssG G  , is at least an order of magnitude 

smaller than the other transition amplitudes, and for the amplitudes of the 

following values are obtained:  

 
5 6

5 5 0d s

ss ssG G  ,  5

5 0.0638d

sG    ,  6

5 0.0581s

sG    . 

The semi-empirical calculations almost always include 6p shell. However, 

for the inclusions of these orbitals in the scheme of perturbation theory, perhaps 

insufficiently approximations that are used to calculate the above transition 

amplitudes. 6p orbitals overlap with the orbitals of the ligand shell is sufficiently 

large, so it is necessary to evaluate the terms dropped in the derivation of the 

expressions for the amplitudes of the transition. To estimate the order of magnitude 

and sign of the contributions from 6p shell with the basis of this work and in the 

notation for the spin densities where accepted 6 6 6pi pi pi iq p s    , i.e. value 

equal to the overlap integrals, taken with the appropriate sign. Performing similar 

calculations were received:  

 
6

5 0p

psG  ,      6

5 0.06623p

pG   ,     6

5 0.026487p

pG    . 

In the section 6.4 covalence parameters are calculated for the impurity 

centers Yb
3+

: CsCaF3, Cs2NaYF6. In the case of the non-isovalent substitution, i.e. 

for impurity centers Yb
3+

: CsCaF3, covalence parameters for the valence shell are  
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4 0.0134,fs          4 0.0653,f          4 0.0298.f   
 

For the impurity center 

For the impurity center Yb
3+

:Cs2NaYF6, i.e. isovalent replacement charge 

defects me, mb in the basic configuration are equal to zero, unlike the Yb
3+

: 

CsCaF3. At the same time in the excited configuration the interaction of the 

electron-hole [23] is aroused. It also noted that it is significantly dependent on the 

actual distribution of the electron density. The several matrix elements of these 

interactions is cite: 

т.е. изовалентного замещения, зарядовые дефекты me, mb в основной 

конфигурации равны нулю, в отличие от Yb
3+

:CsCaF3. В то же время в 

возбужденной конфигурации возникает взаимодействие электрон-дырка [23]. 

Там же отмечается, что оно заметно зависит от реального распределения 

электронной плотности. Приведем для сравнения несколько матричных 

элементов от этих взаимодействий: 

2 1/ 2 0.24051es s r R ,  
2 ,2 ,2 0.24053k k k

k

c s g s   ,  

4 0 1/ 2 0.00372ef s  r R ,  
2 ,4 0 ,2 0.00373k k k

k

c f g s    ,  

where 6Г k kc  is the lower Kramers doublet. For the rest of the matrix 

elements are performed similar relations. It can be seen that the replacement of the 

left column on the right, by the transition from Yb
3+

: CsCaF3 to Yb
3+

: Cs2NaYF6, 

almost does not change the value of the amplitude of the transition. The slight 

change is also because of the sums of matrix elements of the operator's HLR. Thus, 

it is shown that the parameters of covalence within the approximations can be 

taken the same for Yb
3+

: CsCaF
3
 and Yb

3+
: Cs2NaYF6. For other parameters 

covalence are obtained the following values: 

5 0.152ds  , 5 0.167d  , 5 0.0906d   , 6 0.290ss  , 6 0.165s  . 

These estimates is allow us to explain the underlying cause of the proximity 

of the experimental values of the tensor components LSTV, though ions are 
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introduced in different crystals, and in one case replacement non-isovalent and the 

other isovalence. 

In section 6.5, the spin Hamiltonian formalism is used and compared with 

experimental data for impurity centers Yb
3+

: CsCaF3, Cs2NaYF6. In the case of 

cubic impurity centers, in which an impurity ion is ion Yb
3+

, the ligand hyperfine 

interaction Hamiltonian can be written as follows:  

  .LS z z x x y yH T S I T S I S I    (37) 

The transition from the operators Vi to the spin Hamiltonian is conducted in 

the standard manner [8, 20]. 

The wave function of the doublet 6Г  is: 

 

1/2 1/2

6

1 1 5
Г , 4 0, 4 1, 4 3, .

3 2 12
f f f

   
          

   
 (38) 

Here are the expressions for contributions to the tensor components LSTV 

for the some processes. The contribution from the effects of non-orthogonality and 

covalent 4f-shell will be determined by the formulas [A11] 

 
         1 1 1 1 1

4 4 4 4

1 2 3 3
,

3 3 2 2
fs s f f f pT f a f f f a  

 
    

 
  

 
         1 1 1 1 1

4 4 4 4

1 1 3 13 3
.

3 3 4 6 2
fs s f f f pT f a f f f a  

 
     

 
  

The contribution from the operator V2, taking into account virtual excitation 

of electrons from the 4f-shell overlying shell electron-hole interaction, will be 

determined by the formulas [A11] 

 
         2 2 2 2 22 4 3

3 ,
3 3 2

ds s d d p d pT f a f f a f a  

 
    

 
  

   

 
         2 2 2 2 2

4

2 2 3 13 3
.

3 3 2 6 2
ds s d d p f pT f a f f a f a  

 
     

 
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In the experimental works the tensor of LSTV is usually lead to isotropic 

part  || 2 / 3sA T T   and anisotropic part  || / 3pA T T   . In Table 4 are given 

the contributions from all the above processes, as well as experimental data.  

Table 4  

The theoretical values of the parameters LSTV As and Ap (in MHz) of the first 

coordination sphere of F- for Yb
3+

 in CsCaF3 and Cs2NaYF6. The experimental 

data are taken from [A11] 

 

Crystal  Ad V1 V2 V3 V4 V5 Sum Exper. 

CsCaF3  

As 

 

0 

 

9.88 

 

4.34 

 

0.68 

0  

5.18 

20.08 20.577 

Cs2NaYF6 0.9 20.98 22.111 

CsCaF3  

Ap 

 

− 9.0 

 

2.89 

 

1.38 

 

− 0.95 

0  

0.62 

− 5.06 − 5.963 

Cs2NaYF6 − 0.8 − 5.86 − 6.208 

In section 6.6 the isotropic component tensor LSTV 
17

O ions at room 

temperature for the crystal LaMnO3 is calculated. A comparison with the 

experimentally observed shift of the NMR line is conducted. We get enough good 

agreement with experiment [A15, A17]. Thus, according to NMR data it was 

determined cooperative picture in this compound. 

In conclusion, the main results of the dissertation are short state. 

1. The second quantization expressions for the single-particle and two-

particle operators in the basis of the product of the wave functions of the 

interacting ions are obtained. The matrix elements can be calculated with any 

precision at the overlap integrals. 

2. It is proved that in the developed formalism "non-orthogonality 

catastrophe" does not arise. The series of overlap integrals are finite. 

3.   The expression for the probability amplitudes of electron transition metal-

ligand (analog covalency parameter in the method of molecular orbitals) is 

generalization. The calculations can be carried out without the assumption of 

smallness of the overlap integrals.  



 29 

4. The theory of the interaction of spin and orbital moments of paramagnetic 

ions with neighboring nuclei of diamagnetic ions is developed. The most important 

virtual processes of charge transfer from the diamagnetic ions in the cladding of 

rare-earth ions are found. The important role of external polarization filled 5s- and 

5p-shells is highlights. A mechanism for the creation of an extra field in the nuclei 

of the ligands associated with the electric field virtually excited hole-state on the 

ligand is offered. 

5. A detailed comparison with experiments on the row of compounds is 

conducted. The development of theory and proposed mechanisms transferred 

magnetic fields on the nuclei of diamagnetic ions help to explain the main features 

of the formation of the local fields at the fluorine nuclei in impurity centers: Yb
3+

 

in CsCaF3 and Yb
3+

 in Cs2NaYF6. 

6. The values of the local magnetic fields at the nuclei 
17

O in LaMnO3, with 

different ordering of the orbitals of the ions Mn
3+

, are calculated. By comparison 

with experimental data set form of the wave functions of Mn
3+

 ions and thereby the 

picture of cooperative ordering in this compound is determined. 
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