УДК 539.3, 629.7.01

ЧИСЛЕННОЕ РЕШЕНИЕ ПЛОСКОЙ ЗАДАЧИ О ГЕНЕРАЦИИ МОНОГАРМОНИЧЕСКИХ ЗВУКОВЫХ ВОЛН В ЗАМКНУТОЙ ПРЯМОУГОЛЬНОЙ ОБЛАСТИ С ОТВЕРСТИЕМ¹⁾ В.Н. ПАЙМУШИН^{1,2}, Р.К. ГАЗИЗУЛЛИН², И. ГЮНАЛ³

¹ Казанский (Приволжский) федеральный университет,
² Казанский национальный исследовательский технический университет им. А.Н.Туполева (КНИТУ-КАИ), ³ ООО «Онук», Стамбул, Турция E-mail vpajmushin@mail.ru; gazizullin.rk@yandex.ru

NUMERICAL SOLUTION OF A PLANE PROBLEM OF MONOHARMONIC SOUND WAVE GENERATION IN RECTANGULAR AREA WITH APERTURE V.N. PAIMUSHIN^{1,2}, R.K. GAZIZULLIN², I. GUNAL³

¹ Kazan Federal University, ² Kazan National Research Technical Tupolev University, ³ Onuk A. S., Istanbul, Turkey

Аннотация

Дано численное решение плоской задачи о генерации моногармонической звуковой волны в прямоугольной области. Решение данной задачи необходимо для математического моделирования экспериментального определения звукоизолирующих свойств тонкостенных элементов конструкций методом смежных реверберационных камер в акустических испытательных лабораториях. Оно является одной из частей численного решения плоской задачи о прохождении звуковой волны сквозь тонкую деформируемую пластину. На основе использования волновых уравнений в двумерном приближении предложен метод нахождения параметров падающей звуковой волны основанный на комбинированном использовании методов конечных разностей и конечных сумм. Приведены результаты численных экспериментов.

Ключевые слова: Волновое уравнение, звуковая волна, численный метод, теоретические исследования.

Summary

This paper gives a numerical solution to the plane problem of monoharmonic sound wave generation in rectangular area. The problem solution is essential when modeling the experimental determination of sound-insulating properties of thin-walled structures in acoustic laboratories using adjacent reverberation chambers method. The solution is also relevant as it is one of the parts of a numerical solution to the plane problem of sound wave penetration through a deformable thin plate. The suggested method for finding the incident wave parameters is based on two-dimensional approximation of wave equations and combines finite difference and finite sum methods. In addition, numerical research results are put forward.

Key words: Wave equation, acoustic wave, numerical method, theoretical investigation.

Введение

Экспериментальное определение звукоизоляционных свойств тонкостенных элементов конструкций в соответствии с ГОСТ 26602.3-99 и СНиП 23-03-2003 (Защита от шума. – М., 2011) проводят в специальных акустических испытательных лабораториях. Такие лаборатории реверберационного типа состоят

¹⁾Работа выполнена при поддержке Российского научного фонда (проект 14-19-00667) и за счёт средств субсидии, выделенной в рамках государственной поддержки Казанского (Приволжского) федерального университета в целях повышения его конкурентоспособности среди ведущих мировых научно-образовательных центров.

из двух смежных по горизонтали помещений (камер высокого и низкого уровней давления), в проем между которыми монтируют испытываемый образец. В камере высокого давления источником звука формируется моногармоническая звуковая волна, которая, взаимодействуя с испытываемым образцом, вызывает в нем установившиеся незатухающие колебания, формирующие в камере низкого давления излученные образцом звуковые волны. Разностью давлений, установившихся в камерах, и характеризуются звукоизоляционные свойства испытываемого образца. Для теоретического определения этих свойств и математического моделирования испытаний в статье (см. [1]) были рассмотрены две постановки соответствующей задачи, отличающиеся способом формирования звуковой волны в камере высокого давления. В ней с целью качественного изучения рассматриваемых процессов решения сформулированных задач были получены лишь в первом приближении, соответствующем разложению неизвестных задачи в ряды Фурье и удержанию в них нулевых гармоник. В развитие результатов проведенных ранее исследований (см. [1,4,5]) ниже рассматривается одна из предложенных (см. [1]) постановок плоской задачи о прохождении звуковой волны сквозь деформируемую пластину, расположенную между двумя камерами. Разработан численный метод решения задачи предварительного определения параметров падающей на пластину звуковой волны.

1. Постановка задачи

Рассмотрим на плоскости x0z прямоугольную область Ω , ограниченную координатными линиями x = 0, x = B, z = 0 и z = -l. Предполагаем, что в точках отрезка $\partial \Omega_p$ координатной линии z = 0, соответствующей $b \leq x \leq b + a$, имеется генератор звуковых волн, поддерживающий звуковое давление $p_0 = \tilde{p}e^{i\omega\tau}$ ($i = \sqrt{-1}$ – мнимая единица), изменяющееся по времени τ по гармоническому закону с частотой ω , а \tilde{p} считается известным амплитудным значением давления (в частности, его можно определить экспериментально). Остальные точки граничной линии $\partial\Omega$ являются точками отражателей. Поэтому для определения установившегося в области Ω поля звукового давления p и поля скоростей установившегося движения акустической среды V_x , V_z , связанных с потенциалом скоростей $\Phi(x, y)$ зависимостями (ρ – плотность среды, c – скорость звука в акустической среде)

$$p = -\rho \frac{\partial \Phi}{\partial \tau}, \quad V_x = \frac{\partial \Phi}{\partial x}, \quad V_z = \frac{\partial \Phi}{\partial z}$$
 (1)

решение волнового уравнения

$$\frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial z^2} = \frac{1}{c^2} \frac{\partial^2 \Phi}{\partial \tau^2}, \ x, y \in \Omega$$
(2)

должно быть подчинено граничным условиям:

при
$$x = 0, x = B: V_x = \frac{\partial \Phi}{\partial x} = 0;$$
 (3)

при
$$z = 0, \ z = -l$$
, когда $x \notin \partial \Omega_p : V_z = \frac{\partial \Phi}{\partial z} = 0;$ (4)

при
$$z = 0$$
, когда $x \in \partial \Omega_p : p_0 = -\rho \frac{\partial \Phi}{\partial \tau}.$ (5)

Представим решение уравнения (2) в виде $\Phi = \tilde{\Phi}(x,z) e^{i\omega\tau}$. Тогда вместо (2) приходим к уравнению

$$\frac{\partial^2 \tilde{\Phi}}{\partial x^2} + \frac{\partial^2 \tilde{\Phi}}{\partial z^2} + k^2 \tilde{\Phi} = 0, \ k = \frac{\omega}{c},$$
(6)

для которого граничные условия (3)-(5) запишутся в виде

при
$$x = 0, x = B: \frac{\partial \tilde{\Phi}}{\partial x} = 0;$$
 (7)

при
$$z = -l: \frac{\partial \Phi}{\partial z} = 0;$$
 (8)

при
$$z = 0$$
, когда $x \notin \partial \Omega_p : \frac{\partial \tilde{\Phi}}{\partial z} = 0;$ (9)

при
$$z = 0$$
, когда $x \in \partial \Omega_p$: $\tilde{\Phi} = i \frac{\tilde{p}_0}{\rho \omega}$. (10)

В направлении оси x введем в рассмотрение конечно-разностную сетку $x = x_s$, s = 0, ..., N + 1, с равномерным шагом h, так что $x_1 = 0$, $x_N = B$, сеточные функции и их производные

$$\tilde{\Phi}_{s}(z) = \tilde{\Phi}(x = x_{s}, z), \quad \frac{d\tilde{\Phi}_{s}}{dz} = \left. \frac{\partial\tilde{\Phi}}{\partial z} \right|_{x = x_{s}}, \quad \frac{d^{2}\tilde{\Phi}_{s}}{dz^{2}} = \left. \frac{\partial^{2}\tilde{\Phi}}{\partial z^{2}} \right|_{x = x_{s}}, \tag{11}$$

а также конечно-разностные аппроксимации производных

$$\frac{\partial \tilde{\Phi}}{\partial x}\bigg|_{x=x_s} = \frac{\tilde{\Phi}_{s+1} - \tilde{\Phi}_{s-1}}{2h}, \ \frac{\partial^2 \tilde{\Phi}}{\partial x^2}\bigg|_{x=x_s} = \frac{\tilde{\Phi}_{s-1} - 2\tilde{\Phi}_s + \tilde{\Phi}_{s+1}}{h^2}.$$
(12)

Тогда при использовании (11) и (12) граничные условия (7) приводят к равенствам

$$\tilde{\Phi}_0 = \tilde{\Phi}_2, \quad \tilde{\Phi}_{N+1} = \tilde{\Phi}_{N-1}, \tag{13}$$

при учете которых уравнение (6) сводится к системе обыкновенных дифференциальных уравнений метода прямых

$$\frac{d^{2}\tilde{\Phi}_{1}}{dz^{2}} + \frac{2}{h^{2}}\left(\tilde{\Phi}_{2} - \Phi_{1}\right) + k^{2}\tilde{\Phi}_{1} = 0,$$

$$\frac{d^{2}\tilde{\Phi}_{s}}{dz^{2}} + \frac{1}{h^{2}}\left(\tilde{\Phi}_{s-1} - 2\tilde{\Phi}_{s} + \tilde{\Phi}_{s+1}\right) + k^{2}\tilde{\Phi}_{s} = 0; \ s = 2, \dots, N-1,$$

$$\frac{d^{2}\tilde{\Phi}_{N}}{dz^{2}} + \frac{2}{h^{2}}\left(\tilde{\Phi}_{N-1} - \tilde{\Phi}_{N}\right) + k^{2}\tilde{\Phi}_{N} = 0.$$
(14)

Для составленных уравнений (14) граничные условия (8), (10) запишутся в виде

$$z = -l: \quad \frac{d\tilde{\Phi}_s}{dz} = 0, \tag{15}$$

а граничные условия (9), (10) запишем в комбинированной форме

$$(1 - r_s) \left. \frac{d\tilde{\Phi}_s}{dz} \right|_{z=0} + r_s \left(\left. \tilde{\Phi}_s \right|_{z=0} - \frac{ip_0}{\rho \omega} \right) = 0, \tag{16}$$

где r_s , s = 1, ..., N, принимают значения <0>, если в узлах конечно-разностной сетки, принадлежащих жесткому отражателю (стенке), выполняется кинематическое граничное условие (9), а в остальных узлах, в которых выполняются условия (10), $r_s = 1$.

Если ввести обозначения для постоянных интегрирования $\tilde{\Phi}_s \Big|_{z=0} = \Phi_{s,0}, s \in 1, ..., N$, то для вычисления сеточных функций $\tilde{\Phi}_s(z)$ можно составить соотношение

$$\tilde{\Phi}_{s}(z) = \tilde{\Phi}_{s,0} + \int_{0}^{z} \frac{d\tilde{\Phi}_{s}}{dz} dz, \ s \in 1, \dots, N.$$
(17)

Интегрируя уравнения (14) от z до z = -l и удовлетворяя граничным условиям (15), при использовании (17) приходим к системе N интегро-алгебраических уравнений вида

,

$$-\frac{d\tilde{\Phi}_{1}}{dz} + \frac{2}{h^{2}} \int_{z}^{-l} \int_{0}^{z} \frac{d\tilde{\Phi}_{2}}{dz} dz dz - \frac{2(l+z)}{h^{2}} \tilde{\Phi}_{2,0} + \\ + \left(k^{2} - \frac{2}{h^{2}}\right) \int_{z}^{-l} \int_{0}^{z} \frac{d\tilde{\Phi}_{1}}{dz} dz dz - (l+z) \left(k^{2} - \frac{2}{h^{2}}\right) \tilde{\Phi}_{1,0} = 0, \\ -\frac{d\tilde{\Phi}_{s}}{dz} + \frac{1}{h^{2}} \int_{z}^{-l} \int_{0}^{z} \frac{d\tilde{\Phi}_{s-1}}{dz} dz dz - \frac{(l+z)}{h^{2}} \tilde{\Phi}_{s-1,0} + \\ + \left(k^{2} - \frac{2}{h^{2}}\right) \int_{z}^{-l} \int_{0}^{z} \frac{d\tilde{\Phi}_{s}}{dz} dz dz - \frac{(l+z)}{h^{2}} \tilde{\Phi}_{s,0} + \\ + \frac{1}{h^{2}} \int_{z}^{-l} \int_{0}^{z} \frac{d\tilde{\Phi}_{s+1}}{dz} dz dz - \frac{(l+z)}{h^{2}} \tilde{\Phi}_{s+1,0} = 0; \ s = 2, \dots, N-1, \\ - \frac{d\tilde{\Phi}_{N}}{dz} + \frac{2}{h^{2}} \int_{z}^{-l} \int_{0}^{z} \frac{d\tilde{\Phi}_{N-1}}{dz} dz dz - \frac{2(l+z)}{h^{2}} \tilde{\Phi}_{N-1,0} + \\ + \left(k^{2} - \frac{2}{h^{2}}\right) \int_{z}^{-l} \int_{0}^{z} \frac{d\tilde{\Phi}_{N}}{dz} dz dz - (l+z) \left(k^{2} - \frac{2}{h^{2}}\right) \tilde{\Phi}_{N,0} = 0,$$

в которых неизвестными являются величины $d\tilde{\Phi}_s/dz$ и $\tilde{\Phi}_{s,0}, s = 1, \ldots, N$. Для замыкания этой системы уравнений к ним необходимо добавить граничные условия (16), которые относительно указанных неизвестных запишутся в виде

$$(1 - r_s)\,\delta(0)\,\frac{d\tilde{\Phi}_s}{dz} + r_s\left(\tilde{\Phi}_{s,0} - \frac{ip_0}{\rho\omega}\right) = 0; \ s = 1,\dots,N,\tag{19}$$

где $\delta(0)$ – дельта-функция Дирака, равная $\delta(0) = 1$ при z = 0 и $\delta(0) = 0$ при z < 0.

В направлении оси z выберем сетку Δ , где Δ : $\{1, \ldots, j, \ldots, K\}$, введем векторы неизвестных $\left\{ d\tilde{\Phi}_s/dz \right\}$ и интегрирующие матрицы (см. [2, 3]) $[J_1], [J_2]$, являющиеся матричными аналогами интегральных операторов

$$I_1(\cdots) = \int_0^z (\cdots) dz, \quad I_2(\cdots) = \int_z^{-l} (\cdots) dz.$$
(20)

В результате вместо уравнений (18), (20) приходим к системе алгебраических уравнений следующего

вида

$$[A] \{d\tilde{\Phi}_{1}\} + 2[B] \{d\tilde{\Phi}_{2}\} + \{C\} \tilde{\Phi}_{1,0} + 2\{D\} \tilde{\Phi}_{2,0} = \{0\}, \\ (1 - r_{1}) [E] \{d\tilde{\Phi}_{1}\} + r_{1}\tilde{\Phi}_{1,0} = r_{1}\frac{ip_{0}}{\rho\omega}, \\ [B] \{d\tilde{\Phi}_{s-1}\} + [A] \{d\tilde{\Phi}_{s}\} + [B] \{d\tilde{\Phi}_{s+1}\} + \{D\} \tilde{\Phi}_{s-1,0} + \\ + \{C\} \tilde{\Phi}_{s,0} + \{D\} \tilde{\Phi}_{s+1,0} = \{0\}, \\ (1 - r_{s}) [E] \{d\tilde{\Phi}_{s}\} + r_{s}\tilde{\Phi}_{s,0} = r_{s}\frac{ip_{0}}{\rho\omega}, \\ 2[B] \{d\tilde{\Phi}_{N-1}\} + [A] \{d\tilde{\Phi}_{N}\} + 2\{D\} \tilde{\Phi}_{N-1,0} + \{C\} \tilde{\Phi}_{N,0} = \{0\}, \\ (1 - r_{N}) [E] \{d\tilde{\Phi}_{N}\} + r_{N} \tilde{\Phi}_{N,0} = r_{N}\frac{ip_{0}}{\rho\omega}, \\ [A] = \left(k^{2} - \frac{2}{h^{2}}\right) [J_{2}] [J_{1}] - [E]; [A] \in R(K, K), \\ [B] = \frac{1}{h^{2}} [J_{2}] [J_{1}]; [B] \in R(K, K), \\ \{C\} = -\left(k^{2} - \frac{2}{h^{2}}\right) (l\{E\} + \{Z\}); \{C\}, \{E\}, \{Z\} \in R(1, K), \\ \end{cases}$$

$$(21)$$

где

$$\{C\} = -\left(k^2 - \frac{2}{h^2}\right) (l\{E\} + \{Z\}); \ \{C\}, \{E\}, \{Z\} \in R(1, K),$$
$$\{D\} = -\frac{1}{h^2} (l\{E\} + \{Z\}); \ \{D\} \in R(1, K).$$

и в них $\lfloor E \rfloor$ — строка вида $\{1,0,0,\ldots,0\};$ $\{E\}$ и $\lceil E \rfloor$ — единичный вектор и единичная матрица; $\{Z\}$ вектор с элементами $\{z_1, z_2, \ldots, z_K\}^T$.

2. Результаты численного решения.

На основе изложенного выше численного метода проведены теоретические расчеты для прямоугольной области, имеющей параметры $B = 5 \, \text{м}, \, l = 5 \, \text{м}, \, b = 2 \, \text{м}, \, a = 1 \, \text{м},$ заполненной воздухом $(c = 331 \ \text{м/сек}, \rho = 1.293 \ \kappa c/m^3)$ при различных значениях круговой частоты $\omega = 2\pi f$ звуковой волны. Амплитудное значение давления $\tilde{p}=1$. На рис. 1 приведены значения потенциала скоростей Φ (первый столбец), а также скоростей установившегося движения акустической среды V_x , V_z (второй и третий столбцы, соответственно) при значениях $\omega = 50; 100; 208; 416; 500 \ \Gamma \mu$.

3. Заключение.

Результаты численного исследования указывают на весьма сложный закон распределения потенциала скоростей и скоростей установившегося движения акустической среды в области. При этом наблюдается существенный разброс значения параметров. Также следует заметить, что частоте $\omega = 208~\Gamma\mu$ длина волны ($\lambda \approx 5 \, M$) совпадает с длиной помещения, в результате чего в комнате формируется стоячая звуковая волна, являющаяся характерным резонансным явлением. Аналогичное явление наблюдается при $\omega = 416 \ \Gamma u.$

Немаловажно отметить, что для обеспечения сходимости численного решения при увеличении частоты требуется сгущать сетку.

Рис. 1: Зависимости $\Phi(x, z)$, $V_x(x, z)$, $V_z(x, z)$

ЛИТЕРАТУРА

- 1. Паймушин В.Н., Газизуллин Р.К. Исследование звукоизоляционных свойств абсолютно жесткой пластины, помещенной на деформируемых опорных элементах между двумя преградами // Ученые записки Казанского университета. Серия физико-математические науки. 2013. Т. 155, Кн. 3. С. 126—141.
- 2. Вахитов М.Б. Интегрирующие матрицы аппарат численного решения дифференциальных уравнений строительной механики // Изв ВУЗов. Авиационная техника. – 1966. – № 3. – С. 50–61.
- 3. Даутов Р.З., Паймушин В.Н. О методе интегрирующих матриц решения краевых задач для обыкновенных уравнений четвертого порядка// Изв ВУЗов. Математика — 1996. — № 10. — С. 13—25.
- 4. Паймушин В.Н. О задачах излучения звуковой волны при динамическом процессе деформирования пластин с учетом внешнего и внутреннего демпфирования// Мат. методи та ф_з.-мех. поля. 2013. Т. 56, № 2. С. 72—85.

5. Игумнов Л.А., Локтева Н.А., Паймушин В.Н., Тарлаковский Д.В. Звукоизоляционные свойства одномерной трехслойной пластины// Мат. методи та ф_з.- мех. поля. – 2013. – Т. 56, № 2. – С. 86–93.

REFERENCES

- Paimushin V.N., Gazizullin R.K. Study of the sound insulation properties of an absolutely rigid plate placed on deformable supporting elements between two obstacles [Issledovanie zvukoizoljatcionnykh svoistv absolyutno zhestkoi plastyny, pometshennoi na deformiruemykh opornykh elemenyakh mezhdu dvumja pregradami] // Kazan. Gos. Univ. Uchen. Zap. Ser. Fiz.-Mat. Nauki. – 2013. – V. 155, Book. 3. – P. 126–141. (in Russian)
- 2. Vakhitov M.B. Integrating matrix the apparatus of the numerical solution of differential equations of structural mechanics [Integtirujushtie matritcy apparat chislennogo reshenija differentcial'nylh uravnenii stroitel'noi mekhaniki] // Izv. Vuzov. 1966. № 3. P. 50–61. (in Russian)
- 3. Dautov R.Z., Paimushin V.N. On the method of integrating matrices for the solution of boundary value problems for fourth-order ordinary equations // Russian Mathematics. 1996. V. 40, № 10. P. 11–23.
- Paymushin V.N. Sound wave radiation in the dynamic process of deformation plates with external and internal damping // Mathematical methods and physicomechanical fields. – 2013. – V. 56, № 2. – P. 72– 85.
- Igumnov L.A., Lokteva N.A., Paimushin V.N., Tarlakovskiy D.V. Sound insulation properties of onedimensional three-layered plate // Mathematical methods and physic-mechanical fields. – 2013. – V. 56, № 2. – P. 86–93.