На правах рукописи

САРИМОВ ЛЕНАР РАФИСОВИЧ

ЭЛЕКТРИЧЕСКИЕ РАЗРЯДЫ МЕЖДУ ПРОТОЧНЫМ ЭЛЕКТРОЛИТИЧЕСКИМ АНОДОМ И МЕТАЛЛИЧЕСКИМ КАТОДОМ

Специальность: 01.02.05 – механика жидкости, газа и плазмы

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени

кандидата технических наук

Казань 2013

Работа выполнена в федеральном государственном бюджетном образовательном учреждении высшего профессионального образования (ФГБОУ ВПО) «Казанского национального исследовательского технического университета им. А.Н. Туполева - КАИ».

Научный руководитель:	– доктор физико-математических наук,
	профессор, Гайсин Фивзат Миннебаевич

Официальные оппоненты: – Кирпичников Александр Петрович доктор физико-математических наук, профессор, Казанский национальный исследовательский технологический университет, зав. кафедрой интеллектуальных систем и управления информационными ресурсами

> Хакимов Радик Гумарович кандидат технических наук, доцент, Казанский (Приволжский) федеральный университет, зав. кафедрой информатики и вычислительных технологий

Ведущая организация: ОАО «Вакууммаш», г. Казань

Защита состоится «____»____2013 года в _____ часов на заседании диссертационного совета Д 212.079.02 при Казанском национальном исследовательском техническом университете им. А.Н. Туполева - КАИ по адресу: 420111, г. Казань, ул. К. Маркса, 10 (зал заседаний ученого совета).

С диссертацией можно ознакомиться в библиотеке Казанского национального исследовательского технического университета им. А.Н. Туполева - КАИ.

Электронный вариант автореферата размещен на сайте Казанского национального исследовательского технического университета им.А.Н. Туполева - КАИ (www.kstu-kai.ru)

Автореферат разослан «_____»____2013 г.

Ученый секретарь диссертационного совета кандидат технических наук, доцент

А.Г.Каримова

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы. Современная техника требует новых технологий управляемого воздействия на материалы, которое в свою очередь сказывается на экономии энергии, реагентов, сырье, повышении производительности труда и качестве изделий. Электрические разряды (ЭР) применяются для полировки металлов и сплавов, технологии получения очистки И мелкодисперсных порошков из различных металлов, как при атмосферном, так и пониженных давлениях, биологической очистки жидкостей. Несмотря на перспективные использования ЭР между твердым и электролитическим электродами большой интерес представляют ЭР между электролитическим анодом и металлическим катодом при атмосферном и пониженных давлениях. Набор имеющихся в литературе теоретических и экспериментальных данных показал, что характеристики и физические процессы ЭР между электролитическим анодом и металлическим катодом при атмосферном и пониженных давлениях практически мало изучены. Не установлены основные формы ЭР между электролитическим анодом и металлическим катодом. Не исследован взаимный переход многоканального разряда (MP) в тлеющий разряд (TP) при атмосферном и пониженных давлениях. Все это задерживает разработку и создание плазменных установок новых технологических процессов с использованием ЭР между электролитическим анодом и металлическим катодом при атмосферном и пониженных давлениях и их внедрение в производство. В связи с вышеизложенным, экспериментальное исследование ЭP между электролитическим анодом и металлическим катодом при атмосферном и пониженных давлениях является актуальной задачей.

<u>Целью данной работы</u> является установление характеристик и выявление особенностей физических процессов, протекающих в ЭР между проточным электролитическим анодом и металлическим катодом при атмосферном и пониженных давлениях и создание на их основе устройств для практического применения в плазменной технике и технологии.

<u>Достижение поставленной цели требовало решение следующих</u> задач:

1. Провести анализ известных экспериментальных и теоретических исследований электрических разрядов между твердым и электролитическим электродами, а также их практических применений.

2. Разработать и создать плазменную установку для исследования ЭР между электролитическим анодом (техническая вода, растворы Na_2CO_3 и NaCl в дистиллированной воде) (проточный и непроточный) и металлическим катодом (сталь Cт5, никель H-0) при атмосферном и пониженных давлениях и получения мелкодисперсных порошков оксида железа Fe_3O_4 и никеля системы NiO-Ni.

3. На базе созданной плазменной установки провести

3

экспериментальные исследования: зажигания разряда, форм ЭP. вольтамперных характеристик (BAX) разряда, распределения потенциала и напряженности электрического поля, плотности тока на металлическом электролитическом аноде, распределения потенциала катоде И на поверхности и в объеме электролитического анода, колебания тока разряда в широком диапазоне межэлектродного расстояния $l = 1 \div 100$ мм, диаметра катода $d_{\kappa} = 3 \div 15$ мм, тока разряда $I = 0.01 \div 10$ А, напряжения разряда U = 0,1.4 кВ, давления в разрядной камере $P = 2.10^{3}.10^{5}$ Па, расхода электролита $G = 15 \div 34$ г/с, скорости прокачки электролита $\upsilon = 0.02 \div 0.05$ м/с.

4. Получить обобщенные эмпирические уравнения для расчета ВАХ электрического разряда между проточным электролитическим анодом и металлическим катодом при атмосферном и пониженных давлениях.

5. Разработать методику и отработать оптимальные режимы получения мелкодисперсных порошков оксида железа Fe_3O_4 и никеля системы NiO-Ni в ЭР между проточным электролитическим анодом и металлическим катодом.

6. Составить уравнения регрессии, позволяющие определить оптимальные параметры процесса получения мелкодисперсных порошков методом плазменного распыления.

<u>Методики исследований.</u> В диссертационной работе для решения поставленных задач применены современные методы и методики исследований со следующим измерительным комплексом:

1) одиночный зонд для измерения распределения потенциала на поверхности и в объеме электролитического анода;

2) цифровые фотокамеры «Canon 400D», «Sony DSC-H9» и видеокамеры «JVC GZ-HD7ER», «Fastec Troubleshooter LE» (скоростная видеокамера);

3) универсальный двухлучевой осциллограф типа ОСУ-20;

4) электростатический вольтметр, амперметр, мультиметры классов точности 0,5;

5) вакуумметр ТВ-610 МТИ класса точности 0,6;

6) измеритель температуры «Center-350»;

7) электронный микроскоп «XL-30 ESEM TMP» и металлографический микроскоп «Микромед-МЕТ» для анализа формы и размера частиц полученных порошков.

При разработке теоретических аспектов для определения основных технологических параметров процесса получения ЭР и мелкодисперсного порошка были использованы положения теплофизики, плазмохимии, физики плазмы, математического анализа; метод теории подобия для решения задач математического моделирования, методы полного факторного эксперимента для оптимизации, методы планирования эксперимента, методы статистического анализа, методы обработки результатов прямых измерений.

<u>Степень достоверности научных результатов</u> подтверждается следующим: все эксперименты проведены с применением современных измерительных приборов высокого класса точности на стабильно

функционирующей установке с хорошей повторяемостью результатов; использованы физически обоснованные методики измерений; расчет погрешностей измерений выполнен с применением методов математической статистики и результаты экспериментов сопоставлены с известными опытными и теоретическими данными.

Научная новизна исследований:

В результате экспериментальных исследований установлены развитие электрического пробоя, формы ЭР, особенности и характеристики в диапазоне $P = 2 \cdot 10^3 \div 10^5$ Па и $\upsilon = 0.02 \div 0.05$ м/с:

- отклонение напряжения электрического пробоя от закона Пашена;

- образование пленочного катодного пятна на поверхности твердого электрода;

- формирование катодных пятен S и U образной формы и их постоянное перемещение в центре катода;

- влияние состава и концентрации электролита, давления и материала электрода на образование катодных пятен;

- переход MP в TP;

- особенности распределения потенциала и напряженности электрического поля для ТР и МР;

- достижение максимального значения потенциала в электролитическом аноде в центре анодного пятна;

- колебания тока МР и ТР;

- выполнение закона Геля в интервале $I = 0,2 \div 0,8$ А для жидкого анода из технической воды.

Практическая ценность. Результаты исследований позволяют выполнить инженерный расчет плазменных установок с проточными и непроточными электролитическими анодами в широком диапазоне тока, межэлектродного расстояния, диаметра металлического катода и давления. Разработана методика и отработаны оптимальные режимы получения мелкодисперсных порошков оксида железа Fe_3O_4 и никеля системы NiO-Ni в ЭР между проточным электролитическим анодом и металлическим катодом при атмосферном и пониженных давлениях.

Основные положения, выносимые на защиту:

1. Результаты экспериментального исследования зажигания разряда между проточным и непроточным электролитическим анодом (техническая вода, растворы Na₂CO₃ и NaCl в дистиллированной воде) и металлическим катодом (сталь Cт5, никель H-0).

2. Результаты экспериментального исследования форм ЭР, ВАХ разряда между проточным и непроточным электролитическим анодом (техническая вода, растворы Na₂CO₃ и NaCl в дистиллированной воде) и металлическим катодом (сталь Cт5, никель H-0) в широком диапазоне параметров U, I, P, l, d_{κ} , G и v.

3. Результаты экспериментального исследования процесса взаимного

перехода ТР в МР при атмосферном и пониженных давлениях.

4. Результаты обобщения ВАХ электрического разряда между проточным электролитическим анодом и металлическим катодом при атмосферном и пониженных давлениях.

5. Методика получения мелкодисперсных порошков оксида железа Fe_3O_4 и никеля системы NiO-Ni в ЭР при атмосферном и пониженных давлениях.

Апробация работы. Основные результаты данной диссертации докладывались и обсуждались на международной научно-практической конференции «Исследование, разработка и применение высоких технологий в промышленности» (Санкт-Петербург, 2008, 2009, 2010 г.); на международной конференции по физике плазмы и УТС (Звенигород, 2010, 2011 г.); на международной научно-практической конференции «Перспективные инновации в науке, образовании, производстве и транспорте 2010» (Одесса, 2010 г.); на международной научно-технической и образовательной конференции «Образование и наука - производству» (Набережные Челны, 2010 г.); на международной молодежной научной конференции «Туполевские чтения» (Казань, КГТУ им. А.Н. Туполева, 2009, 2010 г.); на Ш Всероссийской молодежной конференции с элементами научной школы «Функциональные наноматериалы и высокочистые вещества» (Москва, 2012 г.). Получен патент на изобретение № 2486032 «Способ получения металлического порошка».

<u>Личный вклад автора в работу</u> состоит в создании плазменной установки для исследования ЭР в соответствии с целями исследования; проведении экспериментов, выполнении обработки, анализа и обобщения полученных экспериментальных результатов и разработке методик получения мелкодисперсных порошков.

Публикации. По теме диссертации опубликовано 15 печатных работ (3 статьи в ведущих рецензируемых журналах, рекомендованных ВАК, 10 работ в материалах конференций, 1 препринт, 1 патент на изобретение).

<u>Структура и объем работы.</u> Диссертационная работа состоит из введения, четырех глав, выводов, списка использованной литературы, приложения. Работа изложена на 132 страницах машинописного текста, содержит 60 рисунков, 8 таблиц и список литературы из 131 источника отечественных и зарубежных авторов.

СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность работы, ее цель, формируются задачи исследования, основные защищаемые положения и научная новизна результатов.

<u>В первой главе</u> проведен анализ известных экспериментальных и теоретических исследований ЭР между металлическим и электролитическим электродами, там же обсуждаются области их практических применений, сформулированы задачи диссертационной работы. В конце первой главы дана постановка задач исследования.

Во второй главе приведены описания плазменной установки, системы управления, измерительной аппаратуры, методика проведения экспериментов, и оценка точности измерений. Плазменная установка предназначена для исследования ЭР между проточным и непроточным электролитическим анодом (техническая вода, растворы Na₂CO₃ и NaCl в дистиллированной воде) и металлическим катодом (сталь CT5, никель H-0) в диапазоне U = 0,1.44 кВ, I = 0,01.40 А, I = 1.400 мм, $P = 2.10^3.10^5$ Па, G = 15.34 г/с, $\upsilon = 0.02.005$ м/с. Функциональная схема установки, представлена на рис.1.

частями плазменной установки Основными являются система электрического питания I, система контроля II и рабочая система III. Источник питания, состоящий из регулятора напряжения 22, повышающего трансформатора 21 и блока выпрямителей 20, обеспечивает подачу напряжения регулируемого стабилизированного постоянного по токоподводам на разрядный промежуток. Блок разрядной камеры ІІІ содержит барботер 17 с компрессором 19 для подачи воздуха на дно электролитической ванны 16, емкости для электролита 15. Электролит во время работы постоянно перекачивается с помощью насоса 11 из электролитической ванны через дренажное отверстие, фильтра 12 и бака с теплообменником 9 и вновь стекает в электролитическую ванну, благодаря чему происходит его постоянное перемешивание.

На дне электролитической ванны установлена изолированная от корпуса анодная электродная пластина. Отрицательный потенциал подводится к изолированной от корпуса штанге 7, к которой с помощью зажимов могут быть прикреплены металлические электроды 8 различной формы. Штанга с помощью электропривода может перемещаться в вертикальной плоскости, благодаря чему можно устанавливать необходимое межэлектродное расстояние.

ВАХ разряда между электролитическим анодом и металлическим катодом измерялись с помощью вольтметра М 367 класса точности 0,5 и электростатического вольтметра С-511 класса точности 0,5, амперметром Ц4311 класса точности 0,5 и мультиметром МУ69 класса точности 0,5. Относительные погрешности измерения напряжения разряда не превышали 1,5%. Блок разрядной камеры включает в себя также вакуумную систему *18*, которая состоит из вакуумной камеры и вакуумного насоса *5* типа PBH-204. Рабочее давление в вакуумной камере измеряется вакуумметром TB-610 МТИ класса точности 0,6.

Для каждого набора значений *l*, *d*_к, *P*, *G*, *v*, состава и концентрации электролита регистрация параметров ЭР проводилась не менее 8 раз. С помощью фотоаппарата марки Canon 400D и видеокамер марки JVC GZ-HD7ER и Fastec Troubleshooter LE (скоростная видеокамера) осуществлялось фотографирование и видеосъемка разряда соответственно. Температура электролита контролировалась при помощи ртутного термометра TH4 M с

ценой деления 0,2 °C, а также цифровым бесконтактным прибором Center-350 с точностью $\pm 0,2\%$.

Рис.1. Функциональная схема плазменной установки для исследования электрического разряда между проточным и непроточным электролитическим анодом и металлическим катодом:

I – стабилизатор напряжения; 2 – система контроля межэлектродного расстояния;
3 – система контроля параметров электролита; 4 – система контроля электрических параметров разряда;
5 – вакуумный насос;
6 – система регулирования давления в разрядной камере;
7 – держатель металлического катода с приводом;
8 – металлический катод;
9 – бак с теплообменником;
10, 13 – запорная арматура;
11 – насос перекачки электролита;
12 – фильтр для очистки электролита;
14 – обратный клапан;
15 – емкость для электролита;
16 – электролитическая ванна;
17 – барботер;
18 – вакуумная камера;
19 – воздушный компрессор;
20 – блок выпрямителей;
21 – трансформатор;
22 – регулятор напряжения.

При определении распределения потенциала напряженности И электрического поля менялось расстояние между металлическим катодом и электролитическим анодом и фиксировалось изменение напряжения горения изменением расстояния при постоянной величине тока. разряда с Распределения потенциала φ и напряженности электрического поля *E* на оси разряда измерялись с помощью вольфрамового зонда с диаметром 0,5 мм, координатного устройства и электростатического вольтметра С-511 класса точности 0,5. Осредненная плотность тока на электродах определялась как отношение тока разряда к площади катодного или анодного пятна. Площади катодного и анодного пятен определялись путем измерения их диаметров с помощью микроскопа типа СП-52 с погрешностью ±0,05 мм. Колебания тока разряда исследовалось с помощью универсального двухлучевого осциллографа типа ОСУ-20. Для анализа формы и размера частиц порошков оксида железа Fe₃O₄ и никеля системы NiO-Ni использовались электронный

микроскоп «XL-30 ESEM TMP» и металлографический микроскоп «Микромед-МЕТ».

<u>В третьей главе</u> приведены результаты экспериментальных исследований ЭР между проточным и непроточным электролитическим анодом (техническая вода, растворы Na₂CO₃ и NaCl в дистиллированной воде) и металлическим катодом (сталь Cт5, никель H-0).

Проведены экспериментальные исследования напряжения зажигания в зависимости от межэлектродного расстояния, материала и диаметра металлического катода. Сравнение зависимостей напряжения зажигания от *l* с обобщенной кривой Пашена приведено на рис.2.

Из рис.2 видно значительное отклонение экспериментальных данных от этой обобщенной кривой. Сравнивая кривые 1, 2 и 3 можно отметить влияние на напряжение зажигания разряда состава электролитического анода. Использование вместо технической воды раствора NaCl и Na₂CO₃ приводит к уменьшению напряжения зажигания при одинаковых межэлектродных расстояниях. Эти изменения связаны с проводимостью и деформацией поверхности электролитического анода.

Рис.2. Сравнение экспериментальных данных с обобщенной кривой Пашена (кривая 4) (катод – Ст5, $d_{\kappa} = 5$ мм): I – проточный анод – 0,5%-ый раствор NaCl, глубина электролита $H_{3} = 56$ мм; 2 – проточный анод – 0,1%-ый раствор Na₂CO₃, глубина электролита $H_{3} = 56$ мм; 3 – проточный анод – техническая вода, глубина электролита $H_{3} = 56$ мм

Изучены образование катодных пятен на поверхности твердого электрода при атмосферном и пониженных давлениях. Как видно из рис.3,а горит МР при $P = 10^5$ Па, I = 0,5 А и l = 3 мм. В данном случае на поверхности стального катода (Ст5) наблюдаются 3 точечные пятна, а с ростом тока количество пятен увеличивается до 5. Диаметр пятен составляет $d_{sm} = 1,5$ мм. При I = 0,7 А точечные пятна сливаются в общее пленочное катодное пятно (рис.3,б), занимающее всю торцевую поверхность электрода. Когда катодное пятно занимает всю торцевую поверхность металлического электрода, наблюдаются четко различимые S- и U-образные ярко светящиеся пятна на поверхности электрода. Они хаотически перемещаются в центре катодного пятна.

Экспериментальные исследования показали, что изменение состава и концентрации электролитического анода, давления и материала катода

существенно не влияет на характер образования катодных пятен. При этом меняется лишь форма разряда.

Рис.3. Фотографии образования катодных пятен на поверхности твердого электрода (Ст5) при $P = 10^5$ Па, l = 3 мм, $d_{\kappa} = 6$ мм. Электролит (непроточный) – техническая вода: a - I = 0,5 A; $\delta - I = 0,7$ A

Выявлено, что в диапазоне параметров от $P = 8 \cdot 10^3$ Па до $P = 7 \cdot 10^4$ Па, $U = 250 \div 620$ В, $I = 0.08 \div 0.4$ А и $l = 0.5 \div 5$ мм горит многоканальный разряд для стали Ст5 (рис.4,а). При $P = 7 \cdot 10^4$ Па в интервале $U = 620 \div 720$ В, $I = 0.3 \div 0.4$ А и $l = 5 \div 6$ мм МР переходит в ТР (рис.4,б). С увеличением $P > 7 \cdot 10^4$ Па при U = 620 В и I = 0.33 А вид ТР сохраняется.

В случае использования в качестве металлического катода никель H-0 и электролитического анода технической воды в диапазоне от $P = 5 \cdot 10^3$ Па до $P = 10^5$ Па, $U = 200 \div 850$ В, $I = 0,01 \div 0,8$ А и $l = 0,5 \div 40$ мм горит TP (рис.4, в). Как видно из рис.4,в, при $P = 10^5$ Па, U = 740 В, I = 0,45 А и l = 5 мм на поверхности электролита имеется сплошное анодное пятно фиолетового цвета ($d_a = 3,5$ мм), а также наблюдается ПС. С ростом $U = 740 \div 750$ В при межэлектродном расстоянии l = 5 мм TP переходит в MP (рис.4,г). Многоканальный разряд на поверхности никелевого катода опирается на точечные пятна. Между анодом и катодом можно выделить три характерные области. Первая область расположена над анодным пятном, представляющая собой темное пространство. Толщина анодного слоя h = 0,5 мм при l = 5 мм и увеличивается с ростом l. Вторая область представляет собой светящийся ореол желто-белого цвета. Эта область относится к зоне плазменного столба.

Рис.4. Фотографии взаимного перехода МР и ТР, когда проточным электролитическим анодом служит техническая вода. $a - MP: P = 7 \cdot 10^4 \Pi a;$ U = 620 B, I = 0,34 A; $l = 5 \text{ мм}, d_k = 6 \text{ мм};$ катод – CT5; 6 – TP: $P = 7 \cdot 10^4 \Pi a, U = 620 B;$

I = 0,33 А, l = 5 мм; $d_{\kappa} = 6$ мм, катод – Ст5; $e - \text{TP}: P = 10^5$ Па; U = 720 В, I = 0,4 А; l = 5 мм, $d_{\kappa} = 6$ мм; катод – H-0; e - MP: $P = 10^5$ Па, U = 730 В; I = 0,45 А, l = 5 мм; $d_{\kappa} = 6$ мм, катод – H-0

Одним из важных характеристик для понимания физических процессов электрического разряда являются зависимости U=f(I). Из сравнения кривых *I*, *2*, *3*, *4*, *5* и *6* (рис.5) следует, что применение различных растворов в качестве электролитического анода и катода из материала сталь и никель при $P = 10^5$ Па на характер ВАХ не влияют. Сравнение кривых *I*, *2*, *3*, *4*, *5* и *6* (рис.6) позволяет определить влияние электролита и материала катода на характер ВАХ разряда при $P = 8 \cdot 10^3$ Па.

Рис.5 ВАХ разряда между проточным электролитическим анодом и металлическим катодом при: $d_{\kappa} = 6$ мм, l = 5 мм, $P = 10^5$ Па: l -анод – техническая вода, катод – Ст5; 2 - анод – техническая вода, катод – Ст5; 4 -анод – 0,5%-ый раствор Na₂CO₃, катод – Ст5; 5 -анод – 0,1%-ый раствор Na₂CO₃, катод – Ст5; 6 -анод – 0,5%-ый раствор Na₂CO₃, катод – H-0; 6 -анод – 0,5%-ый раствор NaCl, катод – H-0;

Рис.6. ВАХ разряда между проточным электролитическим анодом и металлическим катодом при $d_{\kappa} = 6$ мм, l = 5 мм, $P = 8 \cdot 10^3$ Па:

I – анод – техническая вода, катод – Ст5; 2 – анод – техническая вода, катод – H-0; 3– анод – 0,5%-ый раствор NaCl, катод – H-0; 4– анод – 0,1%-ый раствор Na₂CO₃, катод – Ст5; 5– анод – 0,5%-ый раствор NaCl, катод – Ст5; 6 – анод – 0,1%-ый раствор Na₂CO₃, катод – H-0

На рис.7 показано φ и *E* для TP (кривая *1*) и MP (кривая 2) с электролитическим анодом из технической воды при $P = 7 \cdot 10^4$ Па.

Анализ кривых показывает, что характер распределения *E* между электролитическим анодом и металлическим катодом существенно меняется. Для многоканального разряда величина *E* от электролитического анода к металлическому катоду снижается в интервале l от 0,8 до 1,8 мм, а в диапазоне l от 1,8 до 3,2 мм принимает минимальное значение E = 5 В/мм, а затем возрастает до значения E = 9 В/мм. В случае тлеющего разряда напряженность электрического поля в интервале l от 0,8 до 2,8 мм не меняется (E = 1 В/мм). С ростом l от 2,8 до 4,8 мм наблюдается значительное увеличение E в прикатодной области. Таким образом из сравнения кривых 1 и 2 следует, что характер распределения E для TP и MP различен.

Рис.7 – Распределение потенциала и напряженности электрического поля между проточным электролитическим анодом (техническая вода) и металлическим катодом (Ст5) для ТР (кривая 1 - E, и кривая $4 - \varphi$) и МР (кривая 2 - E, и кривая $3 - \varphi$) при $P = 7 \cdot 10^4$ Па, $d_{\rm k} = 4$ мм, l = 5 мм: ТР – U = 420 В и I = 0.25 А

Важным параметром для электрического разряда являются плотности тока на металлическом катоде j_{κ} и электролитическом аноде j_{a} . Анализ экспериментальных данных показал, что в случае использования в качестве катода стали Ст5 величина j_{κ} в интервале тока от 1 до 2 А уменьшается незначительно. Это связано с началом процесса выделения оксидного порошка железа. С уменьшением *P*, характер изменения j_{κ} сохраняется. С ростом тока разряда в диапазоне от 0,1 А до 1 А наблюдается плавное падение величины j_{a} от 3 до 1 А/см² (рис.8). При I = 0,5 А следует, что с понижением давления от 10^5 до $8 \cdot 10^3$ Па величина j_{a} уменьшается в 1,5 раза.

Рис.8 – Зависимость плотности тока на поверхности проточного электролитического анода (техническая вода) от тока разряда для различных давлений при l = 3 мм, катод – сталь Ст5: $I - P = 10^5$ Па; $2 - P = 70 \cdot 10^3$ Па; $3 - P = 40 \cdot 10^3$ Па:

$$4 - P = 20 \cdot 10^3 \text{ Ha;}$$

 $5 - P = 8 \cdot 10^3 \, \Pi a$

Как видно из рис.9, использование в качестве металлического катода никеля H-0 и электролитического анода из 0,5 %-го раствора NaCl при $P = 10^5$ Па и I = 0.25 А величина j_a в 3 раза больше чем с технической водой. С понижением давления до $P = 2 \cdot 10^4$ Па величина j_a становится в 12 раз больше. Анализ экспериментальных данных показал, что в интервале $I = 0.3 \div 0.5$ А выполняется закон Геля.

Рис.9 – Зависимость плотности тока на поверхности проточного электролитического анода от тока разряда для различных давлений при l = 5 мм, катод – никель H-0:

 $I - P = 10^5$ Па, анод – техническая вода;

 $2 - P = 10^5$ Па, анод – 0,5%-ый раствор NaCl;

 $3 - P = 2 \cdot 10^4$ Па, анод – 0,5%-ый раствор NaCl;

 $4 - P = 2 \cdot 10^4$ Па, анод – техническая вода

На рис.10 представлено двумерное распределение ϕ на поверхности технической воды при атмосферном давлении. Двумерное (анод) распределение потенциала φ было снято зондом с помощью координатного устройства. Техническая вода протекает со скоростью $\upsilon = 0.05$ м/с в направлении оси х и нарушает симметричность распределения ϕ . Максимальное значение $\phi \sim 210$ В достигается в центре анодного пятна. На расстояниях $\Delta x = 30$ мм и $\Delta y = 25$ мм величина φ уменьшается почти до нуля. Такое распределение φ существенно влияет на особенности анодного пятна на поверхности технической воды. Интенсивность свечения возрастает к центру двумерного распределения φ .

Анализ экспериментальных данных показал, что в объеме электролита φ_{\max} существенно уменьшается. При глубине h = 25 мм величина φ снижается в 13 раз по сравнению с поверхностью анода.

Рис.10. Двумерное распределение потенциала на поверхности электролитического анода (техническая вода) при: $P = 10^5$ Па, U = 720 В, I = 0.5 А, l = 5 мм

Проведено исследование колебаний тока МР и ТР. При $P = 10^5$ Па для ТР характерны колебания с основной гармоникой около $25\div30$ Гц, коэффициент пульсаций тока при этом находится в пределах $12\div16$ %. При увеличении тока разряда

13

свыше 0,36 А при $P = 10^5$ Па ТР переходит в МР. Форма колебаний тока МР отличается от колебаний тока ТР. Частота основной гармоники колебаний тока находится в пределах 25÷30 Гц.

Экспериментальные данные обобщены с использованием методов теории подобия и размерности при атмосферном и пониженных давлениях в диапазоне параметров 190<U<905 В; 1<l<10 мм; 0.03<l<1 A; 8.10³ <P<10⁵ Па для материалов катода сталь Ст5 и никель H-0.

Составлено эмпирическое уравнение для расчета ВАХ ЭР между проточным электролитическим анодом (техническая вода) и стальным катодом:

$$\frac{U \cdot l^{0.5}}{I} = 1343, 11 \cdot \left(\frac{I}{l^{0.75}}\right)^{-1.02} \cdot (P \cdot l)^{0.14}$$
(1)

(2)

Составлено эмпирическое уравнение для расчета ВАХ ЭР между проточным электролитическим анодом (техническая вода) и никелевым катодом:

Рис.11. Обобщенные ВАХ разряда между проточным электролитическим анодом (техническая вода) и металлическим катодом (а – сталь Ст 5, б – никель Н-0) и экспериментальные точки для: $I - P = 10^5 \text{ Па}; 2 - P = 7 \cdot 10^4 \text{ Па}; 3 - P = 4 \cdot 10^4 \text{ Па};$ $4 - P = 2 \cdot 10^4 \text{ Ta: } 5 - P = 8 \cdot 10^5 \text{ Ta}$

Сравнение кривых рис.11, а, б показывает, что материал катода сильно BAX влияет на характер обобщенных разрядов. Максимальное среднеквадратическое отклонение экспериментальных значений напряжения разряда от полученных эмпирических уравнений, (1) и (2) составляет менее 5%. Поэтому эти критериальные уравнения можно рекомендовать для инженерного расчета плазменных установок с проточным электролитическим анодом.

ЭP B четвертой главе в результате исследования между электролитическим анодом и металлическим катодом при атмосферном и пониженных давлениях разработана методика получения мелкодисперсных порошков оксида железа Fe₃O₄ и никеля системы NiO-Ni. На рис.12 показана фотография получения порошков Fe₃O₄ и NiO-Ni.

а

Рис.12. Фотография получения мелкодисперсных порошков Fe_3O_4 (a) и NiO – Ni (б) при P = 10⁵ Па: а $d_{\rm r} = 6$ MM, U = 700 B, I = 0.6A, l = 3 MM; $6 - d_{\kappa} = 6$ MM, U = 700 B, I = 0.5 A, l = 3 MM.Проточный электролит – техническая вода

Из сравнения фотографий рис.13,а,б видно, что частицы порошков Fe₃O₄ и NiO-Ni имеют правильную сферическую форму.

Рис.13. Фотография частиц порошка Fe₃O₄ (а) и NiO-Ni (б) (увеличение в 800 раз) полученные при $P = 10^5$ Па, $d_{\kappa} = 6$ мм, U = 700 В, l = 3 MM: a - I = 0.6 A (размер 0,65-0,75 мкм); б - I = 0,5 А, (размер 0,2-0,3 мкм)

б

На рис.14 показаны гранулометрические составы порошков оксида системы NiO-Ni, полученных в ЭР, когда железа Fe₃O₄ и никеля электролитическим анодом служила техническая вода.

Фазовый состав продуктов синтеза зависит от условий их образования в плазме ЭР. Данные рентгенофазового анализа полученных порошков и изученные методом рентгеновской дифракции в монохроматическом СиК_αизлучении на дифрактометре ДРОН-3 показывают, что основной фазой в

порошке, полученном плазменным распылением стали Ст5 является магнетит (93 %), остальная часть представляет из себя вюстит.

В таблице 1 показаны данные рентгенофазового анализа порошка, полученного распылением никеля марки H-0.

				таолица т
20, град	d, нм	hkl	I/I ₁	Фаза
37,29	2,41	111	91	NiO
43,31	2,088	200	100	NiO
44,52	2,034	111	100	Ni
51,86	1,762	200	42	Ni
62,93	1,476	220	57	NiO
75,46	1,259	311	16	NiO
76,39	1,246	220	21	Ni
79,41	1,206	222	13	NiO
93,01	1,062	311	20	Ni
95,11	1,044	400	8	NiO
98,5	1,017	222	7	Ni
122	0,881	400	4	Ni

Из таблицы 1 видно, что синтезированный порошок никеля марки H-0 имеет две фазы – оксид никеля NiO и чистый никель Ni кубической модификации.Соотношение по объему между ними равна 1:1. Частицы синтезированного порошка также имеют сферическую форму с размерами частиц в пределах 0,1 – 0,8 мкм диапазона.

Применением метода многофакторного планирования эксперимента получены зависимости, которые описывают влияние параметров ЭР на средний диаметр частиц порошка оксида железа Fe_3O_4 и никеля системы NiO-Ni. Получены уравнения регрессии, которые позволяют подбирать необходимые параметры электрического разряда для получения порошков конкретного размера частиц и производительности.

Для среднего размера частиц порошка из стали:

$$D_{cm} = 0,612 + 0,245 \cdot x_2 + 0,145 \cdot x_3 - 0,029 \cdot x_1 \cdot x_2 + 0,054 \cdot x_1 \cdot x_3 - 0,079 \cdot x_2 \cdot x_3$$
(3)

Для производительности получения порошка из стали:

$$\Pi_{cm} = 35,958 + 5,208 \cdot \mathbf{x}_1 + 11,875 \cdot \mathbf{x}_2 - 4,875 \cdot \mathbf{x}_3 + 4,541 \cdot \mathbf{x}_1 \cdot \mathbf{x}_3 - 6,458 \cdot \mathbf{x}_2 \cdot \mathbf{x}_3 + 6,125 \cdot \mathbf{x}_1 \cdot \mathbf{x}_2 \cdot \mathbf{x}_3$$
(4)

Для среднего размера частиц порошка из никеля:

$$D_{HUK} = 0,395 + 0,145 \cdot \mathbf{x}_1 + 0,045 \cdot \mathbf{x}_3 - 0,054 \cdot \mathbf{x}_1 \cdot \mathbf{x}_2 - 0,054 \cdot \mathbf{x}_1 \cdot \mathbf{x}_3 - 0,02 \cdot \mathbf{x}_2 \cdot \mathbf{x}_3 - 0,02 \cdot \mathbf{x}_1 \cdot \mathbf{x}_2 \cdot \mathbf{x}_3$$
(5)

Для производительности получения порошка из никеля:

$$\Pi_{HUK} = 9,879 + 0,262 \cdot \mathbf{x}_1 - 1,029 \cdot \mathbf{x}_3 - 1,62 \cdot \mathbf{x}_1 \cdot \mathbf{x}_2 + 0,67 \cdot \mathbf{x}_1 \cdot \mathbf{x}_3 + 0,97 \cdot \mathbf{x}_1 \cdot \mathbf{x}_2 \cdot \mathbf{x}_3$$
(6)

Исследование полученного порошка Fe_3O_4 с размером частицы D = 0,5 мкм в сравнении с эталонными ферритами показывает его существенно более высокие магнитные свойства (рис.15). Возможность получения больших значений магнитной индукции в порошке (B = 0,23 Tл), в сочетании со сферичностью формы его частиц, позволяет улучшить качество ферромагнитных сердечников, уменьшить габаритные размеры и потери на перемагничивание. Все это говорит о перспективности применения подобных порошков в машиностроении.

Рис.15. Характеристики намагничивания ферритных порошков *I* – феррит марки М400HH; *2* – феррит марки М400мм; *3* – феррит; *4* – нано феррит железа; *5* – шихта марки 3C418; *6* – металлический порошок Fe₃O₄

Исследованный порошок никеля системы NiO-Ni состоит из сферических частиц правильной формы и это говорит о высокой

технологичности данного порошка. Преимуществом также является однородность порошка по гранулометрическому составу

Основные результаты и выводы

1. Разработана и создана плазменная установка для исследования ЭР между проточным и непроточным электролитическим анодом (техническая вода, растворы Na_2CO_3 и NaCl в дистиллированной воде) и металлическим катодом (сталь Ct5, никель H-0) при атмосферном и пониженных давлениях и получения мелкодисперсных порошков оксида железа Fe_3O_4 и никеля системы NiO-Ni.

2. Изучены зажигание и формы разряда, вольтамперные характеристики разряда, распределения потенциала и напряженности электрического поля, плотности тока на металлическом катоде и электролитическом аноде, распределения потенциала на поверхности и в объеме электролитического анода, колебания тока разряда в диапазоне $l = 1 \div 100$ мм, $d_{\kappa} = 3 \div 15$ мм, $I = 0.01 \div 10$ A. $U = 0.1 \div 4$ кВ. $P = 2 \cdot 10^3 \div 10^5$ Па. $G = 15 \div 34$ г/с и $v = 0.02 \div 0.05$ Установлено отклонение напряжения электрического пробоя м/с. OT обобщенной кривой Пашена при использовании в качестве электролита технической воды и растворов NaCl и Na₂CO₃. Установлено различие распределений потенциала и напряженности электрического поля для ТР и МР. Установлено выполнение закона Геля для анодного пятна при использовании в качестве катода никеля Н-О. Установлено достижение максимального значения потенциала в электролитическом аноде в центре анодного пятна.

3. Установлено, что ЭР при атмосферном и пониженных давлениях в диапазоне $l = 1 \div 100$ мм, $U = 0.1 \div 4$ кВ, $I = 0.01 \div 10$ А и $P = 2 \cdot 10^3 \div 10^5$ Па имеет две основные формы: тлеющий разряд и многоканальный разряд. Выявлен их взаимный переход.

4. Получены обобщенные эмпирические уравнения для расчета ВАХ ЭР между электролитическим анодом и металлическим катодом. Максимальное среднеквадратическое отклонение экспериментальных значений напряжения разряда от расчетных значений, полученных по обобщенным эмпирическим уравнениям, составляет менее 5 %.

5. Разработана методика получения мелкодисперсных порошков оксида железа Fe₃O₄ и никеля системы NiO-Ni в ЭР между проточным электролитическим анодом и металлическим катодом.

По теме диссертации опубликованы следующие работы:

Научная статья, опубликованная в издании, рекомендованном ВАК, патенты:

1. *Саримов Л.Р.* Некоторые особенности электрического разряда между электролитическим анодом и металлическим катодом / Гайсин Ал. Ф., Саримов Л.Р. // Физика плазмы, 2011, т. 37, №6, с. 574-579

2. Саримов Л.Р. Модернизация плазменной установки для получения ферромагнитных нанопорошков / Гайсин Ал. Ф., Гумеров А.З., Насибуллин Р.Т., Саримов Л.Р. // Научно-технический вестник Поволжья, 2011, №4, с. 49-54

3. Саримов Л.Р. Исследование колебаний тока электрического разряда между металлическим и электролитическим электродами при атмосферном и пониженных давлениях / Гайсин Ал. Ф., Гумеров А.З., Насибуллин Р.Т., Саримов Л.Р. // Научно-технический вестник Поволжья, 2011, №6, с. 29-32

4. Пат.№ 2486032 Российская Федерация. (51)МПК В22F9/14. Способ получения металлического порошка / Гайсин А.Ф., Насибуллин Р.Т., Саримов Л.Р., Фахрутдинова И.Т. – 2012119156/02; заявка 10.05.2012; опубл. 27.06.2013

Работы, опубликованные в других изданиях:

5. Саримов Л.Р. Распределение потенциала в электролите разряда между металлическим и электролитическим электродами / Абдрахманов Р.Н., Гайсин Ф.М., Гумеров А.З., Насибуллин Р.Т., Садриев Р.Ш., Саримов Л.Р. // Шестая Международная научно-практическая конференция «Исследование, разработка и применение высоких технологий в промышленности», сборник трудов конференции, С-Пб, Изд-во Политех. унив-та 2008, с. 121-123

6. Саримов Л.Р. Электрические характеристики многоканального разряда между металлическим катодом и электролитическим анодом при атмосферном давлении / Саримов Л.Р., Гумеров А.З. // Международная молодежная научная конференция «XVII ТУПОЛЕВСКИЕ ЧТЕНИЯ», сборник трудов конференции, Казань, КГТУ им. А.Н. Туполева, 2009, с. 135-136 7. Саримов Л.Р. Особенности многоканального разряда между металлическим катодом и электролитическим анодом при атмосферном и пониженных давлениях / Гайсин Ал.Ф., Гумеров А.З., Насибуллин Р.Т., Садриев Р.Ш., Саримов Л.Р. // Восьмая Международная научно-практическая конференция «Исследование, разработка и применение высоких технологий в промышленности», сборник трудов конференции, С-Пб, Изд-во Политех. унив-та 2009, с. 112-113

8. Саримов Л.Р. ВАХ многоканального разряда между металлическим катодом и электролитическим анодом при атмосферном и пониженных давлениях / Гайсин Ал.Ф., Гумеров А.З, Насибуллин Р.Т., Саримов Л.Р. // XXXVII Международная (Звенигородская) конференция по физике плазмы и УТС: тезисы докладов, Москва 2010, с. 299

9. Саримов Л.Р. Получение металлического порошка на плазменной установке при пониженных давлениях / Насибуллин Р.Т., Саримов Л.Р. // Международная научно-техническая и образовательная конференция «Образование и наука - производству», Наб. Челны, ИНЭКА 2010, с. 122-123

10. Саримов Л.Р. Обобщенные вольтамперные характеристики многоканального разряда между металлическим катодом и электролитическим анодом при пониженных давлениях / Гайсин Ал.Ф., Саримов Л.Р. // Международная молодежная научная конференция «XVIII ТУПОЛЕВСКИЕ ЧТЕ-НИЯ», сборник трудов конференции, Казань, КГТУ им. А.Н. Туполева, 2010, том 2, с. 135-136

11. Саримов Л.Р. Метод измерения падения напряжения в электролитическом электроде электрического разряда / Гайсин Ал.Ф., Насибуллин Р.Т., Саримов Л.Р. // Международная научно-практическая конференция «Перспективные инновации в науке, образовании, производстве и транспорте 2010», сборник научных трудов, Одесса, Изд-во Черноморье, 2010, том 6, с. 47-50

12. Саримов Л.Р. Переход тлеющего разряда в многоканальный разряд в плазме между металлическим стальным катодом и электролитическим анодом (техническая вода) при пониженном давлении / Гайсин Ал.Ф., Саримов Л.Р. // Десятая Международная научно-практическая конференция «Исследование, разработка и применение высоких технологий в промышленности», сборник трудов конференции, С-Пб, Изд-во Политех. унив-та 2010, с. 343-344

13. Саримов Л.Р. Переход тлеющего разряда в многоканальный разряд в плазме между никелевой пластиной-катодом и электролитическим анодом (техническая вода) при пониженном давлении / Гайсин Ал.Ф., Саримов Л.Р. // XXXVIII Международная (Звенигородская) конференция по физике плазмы и УТС: тезисы докладов, Москва 2011, с. 287

14. Саримов Л.Р. Электрический разряд между металлическим катодом и электролитическим анодом / Гайсин Ал.Ф., Саримов Л.Р. //препринт, Казань, КГТУ, 2011, с.24

15. Саримов Л.Р. Особенности получения нанопорошка системы NiO-Ni в электрическом разряде / Гайсин Ал.Ф., Гумеров А.З., Насибуллин Р.Т., Саримов Л.Р. // III Всероссийская молодежная конференция с элементами научной школы «Функциональные наноматериалы и высокочистые вещества»: сборник материалов, Москва, ИМЕТ РАН, РХТУ им. Д.И.Менделеева, 2012, с. 515-516