Чубаров Георгий Владимирович

ТОПОЛОГИЧЕСКИЕ АСПЕКТЫ НАДСТРОЕЧНЫХ СЛОЕНИЙ

Специальность 01.01.04 — Геометрия и топология

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата физико-математических наук

Работа выполнена на кафедре геометриии и высшей алгебры механикоматематического факультета ФГАОУ ВПО «Нижегородский государственный университет им. Н.И. Лобачевского (Национальный исследовательский университет)».

Научный руководитель: кандидат физико-математических наук,

доцент Жукова Нина Ивановна.

Официальные оппоненты: Аминова Ася Васильевна,

доктор физико-математических наук, профессор ФГАОУ ВПО «Казанский

(Приволжский) федеральный университет»,

Султанов Адгам Яхиевич,

кандидат физико-математических наук, профессор ФГБОУ ВПО «Пензенский

государственный университет».

Ведущая организация: ФГБУН «Институт математики с ВЦ

УНЦ РАН».

Защита состоится 19 декабря 2013 года в 17 ч. 30 мин. на заседании Диссертационного совета Д.212.081.10 при ФГАОУ ВПО «Казанский (Приволжский) федеральный университет» по адресу: 420008, Казань, ул. Кремлевская, 35.

С диссертацией можно ознакомиться в научной библиотеке им. Н.И. Лобачевского ФГАОУ ВПО «Казанский (Приволжский) федеральный университет» по адресу: 420008, Казань, ул. Кремлевская, 35.

Автореферат разослан « ____ » ноября 2013 г.

Ученый секретарь диссертационного совета Д.212.081.10 кандидат физ.-мат. наук, доцент

Е.К Липачёв

Общая характеристика работы

Актуальность темы. Одним из способов построения слоений является предложенный Хефлигером¹ в 1962 году, алгоритм надстройки (suspension). Слоения, которые можно построить с помощью алгоритма надстройки, называются надстроечными.

Надстроечные слоения изучались Тёрстоном и Хиршем² с точки зрения слоёных расслоений.

В теории динамических систем важную роль играет вариант надстройки 3 , с помощью которой строятся специальные потоки над диффеоморфизмами. Надстройка использовалась для построения примеров слоений с «экзотическими» свойствами. Так Данжуа посредством надстройки сконструировал поток класса C^1 на двумерном торе, определяющий одномерное слоение с исключительным минимальным множеством.

Блюменталь и Хебда⁴ ввели понятие связности Эресмана для слоений как естественное обобщение понятия связности для расслоений. Исследованиям слоений со связностью Эресмана посвящены работы Волака, Шурыгина, Жуковой, Малахальцева и других. Надстроечные слоения образуют подкласс слоений с интегрируемой связностью Эресмана.

Как известно, на многообразии M с надстроечным слоением \mathcal{F} существует риманова метрика g, относительно которой (M,\mathcal{F}) — вполне геодезическое слоение, то есть каждый его слой — вполне геодезическое подмногообразие риманова многообразия (M,g).

Вполне геодезические слоения на римановых многообразиях исследуются в работах Карьера, Жиса⁵, Джонсона⁶, Блюменталя и Хебды⁷, Кейрнса⁸

¹Haefliger A. Varietes feuilletees // Ann. Scuola Norm. Sup. Pisa. 1962. V. 16. P. 367–397.

 $^{^2}$ Hirsch M., Thurston W. Foliated bundles, invariant measures and flat manifolds // Ann. Math. 1975. V. 101, № 3. C. 369–390.

 $^{^3}$ Смейл С. Дифференцируемые динамические системы // УМН. 1970. Т. 25, №1 (151). С. 113—185.

 $^{^4}$ Blumenthal R.A., Hebda J.J. Ehresmann connection for foliations // Indiana Univ. Math. J. 1984. V. 33. P. 597–611.

 $^{^5}$ Ghys E. Classification des feuilletage totalement geodesiques de codimension 1 // Comment. Math. Helv. 1983. V. 58, P. 543–572.

 $^{^6}$ Jonson D.L. Deformations of totally geodesic foliations // Lecture Notes in Pure and Appl. Math. Dekker, New York. 1987. V. 105. P. 167–178.

 $^{^{7}}$ Blumenthal R.A., Hebda J.J. Complementary distributions which preserve the leaf geometry and applications to totally geodesic foliations // Quarterly J. Math. 1984. V. 35, № 2. P. 383–392.

⁸Cairns G. The duality between Riemannian foliations and geodesible foliations // in P. Molino,

и других.

Понятие группоида голономии слоения введено Эресманом. Позднее Винкельнкемпером⁹ была предложена эквивалентная конструкция, названная им графиком слоения.

График $G(\mathcal{F})$ гладкого слоения \mathcal{F} коразмерности q на n мерном многообразии M несёт в себе информацию о росткововых группах голономии слоения (M,\mathcal{F}) и является линейно связным, вообще говоря нехаусдорфововым, (2n-q)-мерным многообразием того же класса гладкости, что и слоение \mathcal{F} .

График применялся: Винкельнкемпером¹⁰ — при оценке количества концов универсального слоя риманова слоения на односвязных компактных многообразиях; Волаком¹¹ — при решении аналогичной задачи для слоений с трансверсальной системой дифференциальных уравнений; Жуковой¹² ¹³ — при исследовании локальной устойчивости компактных слоёв слоений.

Конн¹⁴ построил C^* -алгебры комплекснозначных функций, заданных на группоиде голономии $G(\mathcal{F})$ слоения (M, \mathcal{F}) , и заложил основы некоммутативной геометрии и топологии слоений (см. обзор Кордюкова¹⁵). В работах, где C^* -алгебры применяются для исследования топологических свойств слоений, нехаусдорфовость графика выступает препятствием, которое либо обходится нетривиальным образом (Конн), либо изначально предполагается хаусдорфовость многообразия $G(\mathcal{F})$ (Гектор¹⁶, Фак и Скандалис¹⁷).

В этом контексте целесообразно выделить те классы слоений, которые Riemannian Foliations. Boston: Birkhäuser, 1988. Progress in Math. V. 73. P. 249–263.

 $^{^9\}mathrm{Winkelnkemper}$ H.E. The graph of a foliation // Ann. Global Analysis and Geometry. 1983. V. 1. P. 57–75 $^{10}\mathrm{Winkelnkemper}$ H. E. The number of ends of the universal leaf of a Riemannian foliation // Progr. in Math. 1983. V. 32. P. 247–254

 $^{^{11}}$ Wolak, R.A. Le graphe d'un feuilletage admettant un systeme transverse d'e'quations diffe'rentielles // Math. Z. 1989. V. 201, N_2 2. P. 177–182

 $^{^{12}}$ Zhukova N. I. Local and Global Stability of Compact Leaves and Foliations // Журн. матем. физ., анал., геом. 2013. Т. 9, № 3. Р. 400–420.

 $^{^{13}}$ Жукова Н.И. Графики слоений со связностью Эресмана и слоевая стабильность // Изв. вузов Математика. 1994. № 2. С. 78–81.

¹⁴Connes A. Geometrie non commutative. Paris: InterEdition, 1990. 240 p.

 $^{^{15}}$ Кордюков, Ю. А. Теория индекса и некоммутативная геометрия на многообразиях со слоением // Успехи математических наук. 2009. Т. 64, вып. 2 (386). С. 73–202.

 $^{^{16}{\}rm Hector}$ G. Groupoides, feuilletages et C^* -algebres // Geometryc study of foliation. Tokyo. 1993. P. 3–34. $^{17}{\rm Fack}$ T., Skandalis G. Sur les representations et ideaux de la C*-algebre d'un feuilletage // Journal of Operator Theory. 1982. V. 8. P. 95–129.

имеют хаусдорфов график. Винкельнкемпером¹⁸ доказан общий критерий хаусдорфовости графика слоения в терминах локальных голономных диффеоморфизмов.

Для топологизации множества слоений существуют два подхода. Первый — C^r -топология, являющаяся обобщением C^r -топологии на множестве динамических систем. Второй — топология, специально введённая Хиршем и Эпштейном¹⁹ для слоений. Последняя топология учитывает не только близость касательных пространств к слоям, но и близость их голономий.

Понятие структурной устойчивости введено Андроновым и Понтрягиным²⁰. Структурная устойчивость диффеоморфизмов и потоков на компактных многообразиях является одной из центральных проблем качественной теории динамических систем.

Глубокие результаты по структурной устойчивости слоений в настоящее время получены лишь для отдельных, наиболее простых классов слоений. Структурной устойчивости собственных слоений с морсовскими особенностями коразмерности 1 на компактных многообразиях посвящены работы Бонатти²¹ и Брунеллы²². Исследование структурной устойчивости надстроечных слоений на компактных многообразиях начато Палисом²³. Им был приведён без доказательства критерий структурной устойчивости надстроечных слоений на компактных многообразиях. Различные вопросы структурной устойчивости слоений изучались так же в статьях Леви и Шуба²⁴, Жуковой²⁵.

Орбифолдфы можно рассматривать как многообразия с особенностями. Они введены ${\rm Cataku}^{26}$ и нашли применение в теоретической физике.

¹⁸Winkelnkemper H.E. The graph of a foliation

 $^{^{19}}$ Epstein D. A topology for the space of foliation // Geometry and Topology, Lecture Notes in Math. 1976. V.597. P.132–150.

 $^{^{20}}$ Андронов А.А., Понтрягин Л.С. Грубые системы // ДАН СССР. 1937. Т.14. N 5. С. 247–250.

 $^{^{21}}$ Bonatti C. Sur les feuilletages singuliers stables des variétés de dimension trois. // Commun. Math. Helv. 1985. V. 60 & 2. P. 429-444.

 $^{^{22}}$ Brunella M. Remarks on structurally stable proper foliations // Math. Proc. Cambridge Phil. Soc. 1994. V.115, № 1. P. 111–120.

 $^{^{23}}$ Palis J. Regidity of centralizers of diffeomorphisms and structural stability of suspended foliations // Lecture Notes in Math. 1978. V. 652. P.114–121.

²⁴Levin H., Shub M. Stability of foliations // Trans of AMS. 1973. V. 184. P. 419–437.

 $^{^{25}}$ Жукова Н.И. Компактные слои структурно устойчивых слоений // Труды МИАН, 2012. Т. 278. С. 102–113.

 $^{^{26}}$ Satake I. The Gauss-Bonnet theorem for V-manifolds // J. Math. Soc. Japan. 1957. V. 9. P. 464–492.

Двумерные орбифолды использовал Тёрстон²⁷ для классификации трёхмерных многообразий. Орбифолды возникают так же в теории слоений как пространства слоёв некоторых классов слоений.

Всё выше сказанное говорит об актуальности темы диссертации.

Цель диссертационной работы. Исследование надстроечных слоений:

- с точки зрения хаусдорфовости их графиков, а именно сравнение множества слоений с хаусдорфовым и нехаусдорфовым графиками:
 - в теоретико-множественном аспекте;
 - в топологическом аспекте;
- с точки зрения структурной устойчивости, применительно:
 - к слоениям с хаусдорфовыми и нехаусдорфовыми графиками,
 - к общим надстроечным слоениям;
- с точки зрения возможности обобщения конструкции надстройки.

Методы исследования. В работе использовались методы римановой геометрии, теории регулярных накрытий, теории связностей Эресмана для расслоений и слоений. При исследовании структурной устойчивости надстроечных слоений использовались результаты качественной теории динамических систем и теории представлений групп.

Научная новизна. Все результаты, выносящиеся на защиту, являются новыми и состоят в следующем:

- 1. Доказательство критерия изоморфизма надстроечных слоений в категории слоений $\mathcal{F}ol^{r,s}$ (теорема 1.4.1).
- 2. Доказательство эквивалентности хаусдорфовости графика $G(\mathcal{F})$ надстроечного слоения $(M,\mathcal{F}):=\mathcal{S}\mathbf{us}(B,T,\rho)$ квазианалитичности действия его структурной группы $\Psi:=\operatorname{Im}\rho$ на трансверсальном многообразии T (теорема 2.2.2). Построение на основе этого результата двух континуальных

 $^{^{27}}$ Thurston W.P. The geometry and topology of 3-manifolds // Mimeographed Notes. Princeton Univ. 1978.

семейств попарно неизоморфных вполне геодезических слоений с хаусдорфовыми и нехаусдорфовыми графиками на каждой из следующих компактных локально евклидовых поверхностей: торе, цилиндре, листе Мёбиуса, и бутылке Клейна (теорема 2.3.1).

3. Доказательство структурной устойчивости представления

$$\rho: \pi_1(B, b_0) \to Diff^r(T),$$

в пространстве представлений $A^r(\pi_1(B,b_0),T)$, задающего структурно устойчивое слоение $(M,\mathcal{F}) = \mathcal{S}\mathbf{u}\mathbf{s}(T,B,\rho)$ в пространстве слоений $\mathcal{F}ol_q^r(M)$ (предложение 3.2.1).

Теоретическая и практическая значимость. Диссертация носит теоретический характер. Её результаты могут быть использованы при исследованиях в геометрической теории слоений, а так же применены в учебном процессе при чтении спецкурсов для студентов физикоматематических специальностей и при выполнении курсовых и учебноисследовательских работ.

Апробация. Результаты диссертации докладывались: на международной летней школе-семинаре «Современные проблемы теоретической и математической физики» в Казани в 1999, 2001, 2002, 2003 гг.; на международной конференции «Лаптевские чтения» в Москве (МГУ) в 2000 г.; в весенней математической школе «Понтрягинские чтения-ХІІІ» в Воронеже в 2002 г, на международной конференции «Дифференциальные уравнения и динамические системы» в Суздале в 2004 и в 2010 гг., на Четвёртой молодёжной научной школе-конференции «Лобачевские чтения» в Казани в 2005 г., на международной конференции «Нелинейные уравнения и комплексный анализ», проводимой Институтом математики с ВЦ УНЦ РАН на Южном Урале в 2009 году.

По теме диссертации делались доклады: на «Итоговой научной конференции ННГУ» в Нижнем Новгороде в 1999, на геометрических семинарах кафедры геометрии и высшей алгебры ННГУ (рук. проф. Е.И. Яковлев) в 1999-2013 гг.

Исследования по теме диссертации вошли в научные проекты, поддержанные следующими грантами в которых диссертант являлся исполнителем: 2001–2003 гг. Грант РФФИ «Слоение и расслоение со связностями» проект № 01-01-590-а; 2009-2011 гг. ФЦП «Научные и научнопедагогические кадры инновационной России на 2009-2013 годы», контракт №П495; 2012-2013 гг. ФЦП «Научные и научно-педагогические кадры инновационной России на 2012-2013 годы», контракт № 14.В37.21.0361.

Публикации по теме диссертации и вклад соискателя. По теме диссертации опубликовано 15 работ. Среди них 6 статей, из которых 4 входят в издания, рекомендованные ВАК РФ. Две работы написанны единолично, остальные совместно с научным руководителем.

Во всех совместных работах с научным руководителем вклад каждого из соавторов составляет 50 %.

Все результаты, выносимые на защиту, получены Чубаровым Г.В. самостоятельно.

Структура и объём работы. Диссертация состоит из введения, заключения и четырёх глав основного текста, разбитых на 10 разделов (4 в первой главе 3 во второй и 2 в третьей и 1 в четвёртой) 10-ти рисунков и списка литературы из 81 наименований. Общий объём работы 114 страниц.

Краткое содержание работы

Во введении обоснована актуальность темы, дан краткий обзор литературы по вопросам, рассмотренным в диссертации, сформулированны цели, методы и основные результаты диссертации, кратко описано её содержание, приведён список публикаций автора по теме диссертации.

В главе 1 описаны два способа конструктивного определения надстроечного слоения, а так же даны различные характеризации надстроечных слоений. В заключение доказан критерий изоморфизма надстроечных слоений в категории слоений.

Раздел 1.1 носит реферативный характер. В нём даётся определение слоения и связности Эресмана для слоений, вводится категория C^r -слоений $\mathcal{F}ol^{r,s}$, морфизмами в которой служат C^s -диффеоморфизмы, где $s \leq r$, переводящие слои в слои (определение 1.3.3).

Раздел 1.2 посвящён описанию двух подходов к определению надстроечного слоения и доказательству их эквивалентности. Для построения надстроечного слоения нужно задать два гладких многообразия B и T размер-

ности p и q соответственно и гомоморфизм $\rho: \pi_1(B, b_0) \to Diff^r(T)$ фундаментальной группы многообразия B в группу глобальных диффеоморфизмов многообразия T. Введём обозначения $G:=\pi_1(B,b)$ и $\Psi:=\rho(G)$.

Пусть $f:\widehat{B}\to B$ — универсальное накрывающее отображение, рассматриваемое как главное расслоение со структурной группой G и базой B. Гомоморфизм ρ задаёт левое действие группы G на многообразии T, поэтому можно построить 28 расслоение $M(B,G,T,\widehat{B})$, ассоциированное с главным. Действие дискретной группы G на $\widehat{B}\times T$ сохраняет тривиальное p-мерное слоение $F:=\{\widehat{B}\times\{t\}\mid t\in T\}$ произведения $\widehat{B}\times T$. Поэтому фактор-отображение $f_0:\widehat{B}\times T\to (\widehat{B}\times T)/G=M$ индуцирует на (p+q)-мерном фактор-многообразии M гладкое p-мерное слоение \mathcal{F} , слои которого трансверсальны слоям расслоения $p:M\to B$.

Пара (M, \mathcal{F}) называется надстроечным слоением и обозначается нами через $Sus(T, B, \rho)$. Субмерсия $p: M \to B$ называется трансверсальным расслоением, а T — полной трансверсалью. Группа диффеоморфизмов $\Psi := \rho(G)$ многообразия T называется структурной группой надстроечного слоения (M, \mathcal{F}) .

 $\Pi ped no ложения.$ Везде далее предполагается, что T компактно, а группа G имеет конечное число образующих.

В разделе 1.3 надстроечные слоения охарактеризованны в классе двуслоений (предложение 1.3.2) и в классе слоений со связностью Эресмана (предложение 1.3.3). Здесь доказано также, что слоение (M, \mathcal{F}) трансверсальное слоям субмерсии $p: M \to B$ со связными компактными слоями, является надстроечным тогда и только тогда, когда на M существует полная риманова метрика g, относительно которой (M, \mathcal{F}) — вполне геодезическое слоение (предложение 1.3.5).

Раздел 1.4 посвящён доказательству следующего критерия изоморфизма надстроечных слоений в категории слоений, который выносится на защиту (пункт 1).

Теорема 1.4.1. Пусть

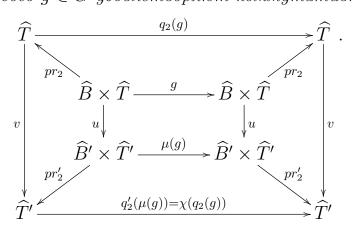
1) $(M, \mathcal{F}) = Sus(T, B, \rho)$ и $(M', \mathcal{F}') = Sus(T', B', \rho')$ — надстроечные C^r -слоения, r > 1;

 $^{^{28} {\}rm Koбaяcu}$ Ш., Номидзу К. Основы дифференциальной геометрии. М.: Наука. 1981. Т.1

- $2)\ \hat{G},\ \hat{G}'$ группы накрывающих преобразований универсальных накрытий для слоёных многообразий $M\ u\ M'$ соответственно;
- 3) $q_2: \hat{G} \to \hat{G}_2, \ q_2': \hat{G}' \to \hat{G}_2' ecmecmbehhыe эпиморфизмы на инду$ $цированные группы диффеоморфизмов <math>\hat{G}_2$ и \hat{G}_2' многообразий \hat{T} и \hat{T}' соответсвенно.

Слоения (M, \mathcal{F}) и (M', \mathcal{F}') изоморфны в категории $\mathcal{F}ol^{r,s}$, $0 \le s \le r$ тогда и только тогда, когда существуют

- 1) C^s -диффеоморфизмы $u: \hat{B} \times \hat{T} \to \hat{B}' \times \hat{T}' \ u \ v: \hat{T} \to \hat{T}';$
- 2) изоморфизмы групп $\mu: \hat{G} \to \hat{G}'$ и $\chi: \hat{G}_2 \to \hat{G}'_2$, которые для любого $g \in \hat{G}$ удовлетворяют коммутативной диаграмме:



Как показывают примеры (пример 1.4.1), структурная группа Ψ надстроечного слоения не является инвариантной в категории слоений.

В главе 2 доказывается критерий хаусдорфовости графика надстроечного слоения и на его основе даётся теоретико-множественная оценка соотношения между множествами бесконечно гладких надстроечных слоений с хаусдорфовым и нехаусдорфовым графиком на компактных поверхностях.

Раздел 2.1 посвящён описанию базовых для главы 2 понятий, таких как ростковая группа голономии $\Gamma(L,x)$, группа \mathfrak{M} -голономии $H_{\mathfrak{M}}(L,x)$, график слоения $G(\mathcal{F})$. Кроме того, приводится пример надстроечного строения с нехаусдорфовым графиком (пример 2.1.1).

В подразделе 2.2.1 доказывается, что расслоение $M(B,T,\pi_1(B,b_0),\hat{B})$ с проекцией $p:M\to B$, трансверсальное надстроечному слоению, имеет группу голономии $\Phi(x)$, изоморфную структурной группе Ψ ; группа \mathfrak{M} -голономии $H_{\mathfrak{M}}(L,x)$ изоморфна группе изотропии Ψ_x структурной группы Ψ , а ростковая группа голономии $\Gamma(L,x)$ образована ростками диффеоморфизмов из группы изотропии Ψ_x в точке x (теорема 2.2.1).

В подразделе 2.2.2 напоминается понятие квазианалитического действия группы диффеоморфизмов на многообразии (определение 2.2.1) и доказывается следующий критерий, выносящийся на защиту (в пункте 2).

Теорема 2.2.2. Если $(M, \mathcal{F}) := \mathcal{S}\mathbf{us}(B, T, \rho)$ — произвольное надстроечное слоение на многообразии M со структурной группой $\Psi := \operatorname{Im} \rho$, то график слоения $G(\mathcal{F})$ хаусдорфов тогда и только тогда, когда группа Ψ действует на многообразии T квазианалитически.

Следствие. Если для надстроечного слоения $(M, \mathcal{F}) := \mathcal{S}\mathbf{us}(B, T, \rho)$ выполняется по крайней мере одно из следующих условий:

- (a) все стационарные подгруппы структурной группы Ψ конечны;
- б) фундаментальная группа многообразия M конечна;
- в) фундаментальная группа многообразия B конечна, то график $G(\mathcal{F})$ этого слоения хаусдорфов (следствия 2.2.1-2.2.3).

В разделе 2.3 доказывается, что среди двумерных поверхностей нетривиальные надстроечные слоения допускают только цилиндр, тор, бутылка Клейна и лист Мёбиуса (предложение 2.3.1). На каждой из этих поверхностей строятся два континуальных семейства бесконечно гладких попарно неизоморфных надстроечных слоений. Все слоения первого семейства имеют хаусдорфов график, а второго — нехаусдорфов график. Вывод содержится в теореме 2.3.1 и следствии 2.3.1.

В главе 3 изучаются топологические аспекты пространства надстроечных слоений.

Раздел 3.1 посвящён топологической оценке множества слоений с хаусдорфовым графиком в пространстве всех одномерных надстроечных слоений на n-мерном замкнутом многообразии с C^1 -топологией.

Напомним, что E называется множеством первой категории в топологическом пространстве X, если оно представимо в виде конечного или счётного объединения подмножеств, нигде не плотных в X. Если E является дополнением в X к множеству первой категории, то E называется множеством второй категории. Свойство подмножества E называется типичным в X, если E – множество второй категории в X.

Через $F_q^r(M)$ обозначаем топологическое пространство \mathbb{C}^{r+1} -слоений коразмерности q с \mathbb{C}^r -топологией. Доказывается, что свойство графика слое-

ния быть хаусдорфовым типично в подпространстве одномерных надстроечных слоений $F_{n-1}^1(M)$ на компактном многообразии M (теорема 3.1.3).

Обозначим через $Sus^2(M)$ пространсво C^2 -гладких надстроечных слоений с C^1 -топологией на двумерной поверхности M. Пусть $SusH^2(M)$ – подпространство слоений в $Sus^2(M)$ с хаусдорфовым графиком, а $SusNH^2(M)$ — с нехаусдорфовым графиком. Доказывается, что множества классов эквивалентности слоений в категории слоений $\mathcal{F}ol^{2,0}$, находящихся в множествах $SusH^2(M)$ и $SusNH^2(M)$, равномощны. При этом $SusH^2(M)$ является множеством второй категории, а $SusNH^2(M)$ — множеством $SusH^2(M)$ является множеством $SusH^2(M)$ (Предложение $Sus^2(M)$ (Предложение $Sus^2(M)$ (Предложение $Sus^2(M)$) (Пред

В разделе 3.2 пространство слоений класса C^r коразмерности q на n-мерном многообразии M с топологией Хирша – Эпштейна обозначается через $\mathcal{F}ol^r_q(M)$.

В подразделе 3.2.1 описывается топология на множестве $A^r(G,T)$ гладких класса C^r представлений дискретной группы G в $Diff^r(T)$ и даётся определение C^r -структурно устойчивого представления $\rho \in A^r(G,T)$ (определение 3.2.3).

Слоение (M, \mathcal{F}) называется структурно устойчивым в пространстве $\mathcal{F}ol_q^r(M)$, если для любой окрестности $U = U(\mathrm{Id}_M)$ в Homeo(M) существует такая окрестность $\mathcal{U} = \mathcal{U}(\mathcal{F}, U)$ слоения \mathcal{F} в $\mathcal{F}ol_q^r(M)$, что для каждого слоения $\mathcal{F}' \in \mathcal{U}$ найдётся гомеоморфизм $d \in U$, который является изоморфизмом слоений (M, \mathcal{F}) и (M, \mathcal{F}') в категории слоений $\mathcal{F}ol^{r,0}$ (определение 3.2.5).

В подразделе 3.2.4 доказано следующее необходимое условие структурной устойчивости надстроечных слоений, выносящееся на защиту (п.3).

Предложение 3.2.1. Если слоение $(M, \mathcal{F}) = \mathcal{S}\mathbf{us}(T, B, \rho)$ структурно устойчиво в пространстве слоений $\mathcal{F}ol_q^r(M)$, то структурно устойчиво и представление $\rho: \pi_1(B, b_0) \to Diff^r(T)$ в пространстве представлений $A^r(\pi_1(B, b_0), T)$.

Обратное утверждение к предложению 3.2.1 доказано Жуковой в совместной работе с соискателем [3]. Суммарный результат сформулирован в виде критерия структурной устойчивости надстроечного слоения (теорема 3.2.2).

Связь с результатами Палиса. Палис 29 исследовал C^{∞} -структурную устойчивость надстроечных слоений на компактных многообразиях M. В этом случае база B=p(M) также компактна, следовательно, фундаментальная группа $G=\pi_1(B,b_0)$ — конечно порождённая.

Нами исследуются надстроечные слоения в более общих предположениях:

- 1) требование компактности многообразия M ослаблено до компактности стандартного слоя T расслоения $p:M\to B$ и конечной порождённости группы G;
 - 2) наши результаты получены в классе гладкости C^r , для любого $r \ge 1$;
- 3) в определении структурной устойчивости слоений и представлений групп, в отличие от Палиса, мы предполагаем, что сопрягающий гомеоморфизм есть ε -гомеоморфизм, то есть является малым. В случае потоков это соответствует структурной устойчивости в смысле Андронова-Понтрягина.

Пейксото в определении структурной устойчивости требовал лишь существования топологического сопряжения. Позднее, как подчеркнул Аносов³⁰, «весьма нетривиальным образом» была доказана эквивалентность определений структурной устойчивости Андронова-Понтрягина и Пейксото для динамических систем. Не известно, как обстоит дело в случае слоений.

В подразделе 3.2.5 доказываются несколько следствий из критерия структурной устойчивости. В частности, если группа $\pi_1(B,b_0) := \langle g \rangle$ имеет одну образующую, то слоение $(M,\mathcal{F}) = \mathcal{S}\mathbf{u}\mathbf{s}(T,B,\rho)$, полученное надстройкой гомоморфизма $\rho:\pi_1(B,b_0)\to Diff(T)$, структурно устойчиво тогда и только тогда, когда диффеоморфизм $\psi=\rho(g)$ структурно устойчив (теорема 3.2.3).

Опираясь на это утверждение, в **подразделе 3.2.6** доказывается, что все надстроечные слоения с нехаусдорфовыми графиками C^1 -структурно неустойчивы (следствие 3.2.4). Это объясняет различие между теоретико множественной и топологической оценкой подпространства надстроечных

²⁹Palis J. Regidity of centralizers of diffeomorphisms and structural stability of suspended foliations // Lecture Notes in Math. 1978. V.652. P.114–121.

 $^{^{30}}$ Аносов, Д.В. О развитии теории динамических систем за последнюю четверть века // Студенческие чтения МК НМУ. М.: МЦНМО, 2000. Вып. 1. 74 с

слоений с нехаусдорфовым графиком на компактных поверхностях.

В главе 4 нами вводятся и исследуются обобщённые надстроечные слоения.

В подразделе 4.1.1 напоминается определение орбифолда и гладкого отображения орбифолдов. Обобщённое надстроечное слоение получается надстройкой гоморфизма $\rho:\pi_1^{orb}(B,b)\to Diff^r(T)$ фундаментальной группы хорошего орбифолда в группу диффеоморфизмов произвольного многообразия T. В случае, когда орбифолд является многообразием, эта конструкция совпадает с надстроечным слоением.

В подразделе 4.1.2 нами вводится понятие канонического двуслоения (определение 4.1.3). Доказывается, что любое двуслоение, накрытое произведением, изоморфно некоторому каноническому двуслоению, определённому однозначно, с точностью до сопряжённости (теорема 4.1.1).

В подразделе 4.1.3 в классе канонических двуслоений выделяется подкласс слоений, которые являются обобщёнными надстроечными (лемма 4.1.1). Доказывается, что любое обобщённое надстроечное слоение изоморфно в категории слоений некоторому каноническому обобщённому надстроечному слоению (теорема 4.1.2). На основании этой теоремы строятся примеры обобщённых надстроечных слоений, не являющихся надстроечными (пример 4.1.1).

В заключении проводится краткий обзор основных результатов, полученных диссертантом.

Публикации в журналах из списка ВАК

- [1] Чубаров, Г.В. Об одном типичном свойстве одномерных суспенсированных слоений /Н.И. Жукова, Г.В. Чубаров // Вестник ННГУ. Серия Математическое моделирование и оптимальное управление. Н.Новгород: Изд-во ННГУ. 2003. Вып. 1 (26). С. 12–21.
- [2] Chubarov, G.V. Aspects of the Qualitative Theory of Suspended Foliations / N.I. Zhukova, G.V. Chubarov // J. Diff. Equat. and Appl. 2003. V. 9, № 3/4. P. 393-405.
- [3] Чубаров, Г.В. Критерий структурной устойчивости надстроечных слоений / Н.И. Жукова, Г.В. Чубаров // Вестник Нижегородского

- университета им. Н.И. Лобачевского. Н.Новгород: Изд-во ННГУ. 2011. №1. С. 153–161.
- [4] Чубаров, Г.В. Обобщённые надстроечные слоения / Н.И. Жукова,
 Г.В. Чубаров // Вестник Нижегородского университета им. Н.И. Лобачевского. Н.Новгород: Изд-во ННГУ. 2012. №5(1). С. 157–164.

Публикации в других изданиях

- [5] Чубаров, Г.В. Вполне геодезические слоения с нехаусдорфовыми графиками /Н.И. Жукова Г.В. Чубаров // Международная школасеминар памяти Н.В. Ефимова, 1998 г. Тезисы докладов. Ростов-на-Дону: НПП Коралл-Микро. 1998. С. 28–29.
- [6] Чубаров, Г.В. Графики суспенсированных слоений /Н.И. Жукова, Г.В. Чубаров // XI Международная школа семинар по современным проблемам теоретической и математической физики. Тезисы докладов. Казань: «Хэттер». 1999. С. 63.
- [7] Чубаров, Г.В. Графики слоений накрытых произведениями / Н.И. Жукова, Г.В. Чубаров // Материалы международной конференции посвящённая 90-летию Г.Ф. Лаптева. М.: Изд-во ЦПИ при механикоматематическом ф-те МГУ. 1999. С. 21–22.
- [8] Чубаров, Г.В. О суспенсированных слоениях / Н.И. Жукова, Г.В. Чубаров // В кн.: Новейшие проблемы теории поля 1999—2000. Казань: Изд-во КГУ. 2000. С. 95—103.
- [9] Чубаров, Г.В. Пространство суспенсированных слоений / Н.И. Жукова, Г.В. Чубаров // Международная научная конференция «Нелинейный анализ и функционально-дифференциальные уравнения» (МНК АДМ 2000). Тезисы докладов. Воронеж: Изд-во ВГУ. 2000. С. 97–98.
- [10] Чубаров, Г.В. Суспенсированные слоения и их графики /Н.И. Жукова, Г.В. Чубаров // XIII Международная школа семинар по современным проблемам теоретической и математической физики. Тезисы докладов. Казань: «Хэттер». 2001. С. 54–55.

- [11] Чубаров, Г.В. Некоторые вопросы качественной теории суспенсированных слоений / Н.И. Жукова, Г.В. Чубаров // Современные методы в теории краевых задач. Материалы воронежской весенней математической школы «Понтрягинские чтения XIII» 3-9 мая 2002 г. Воронеж: Изд-во ВГУ. 2002. С. 54.
- [12] Чубаров, Г.В. Типичность хаусдорфовости графика слоения / Г.В. Чубаров // XIV Международная школа семинар по современным проблемам теоретической и математической физики. Тезисы докладов. Казань: ООО «Издательство РегентЪ». 2002. С. 38–39.
- [13] Чубаров, Г.В. Структурная устойчивость суспенсированных слоений с абелевой голономией / Н.И. Жукова, Г.В. Чубаров // Международная конференция по дифференциальным уравнениям и динамическим системам, Суздаль, 5-10 июля 2004 г. Тезисы докладов. Владимир: Изд-во ВлГУ. 2004. С. 89–91.
- [14] Чубаров, Г.В. О хаусдорфовости графиков некоторого класса вполне геодезических слоений / Г.В. Чубаров // Труды Математического центра имени Н.И. Лобачевского. Т. 31. Казань: Изд-во Казанского математического общества. 2005. С. 170–172.
- [15] Чубаров, Г.В. Критерий структурной устойчивости надстроечных слоений и его применение / Н.И. Жукова, Г.В. Чубаров // Международная конференция по дифференциальным уравнениям и динамическим системам. Суздаль, 2-7 июля 2010 г. Тезисы докладов. М.: МИАН. 2010. С. 83–84.