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Relevance of the topic. Let E � complex Hilbert space with inner product (·, ·) and the

norm || · ||, and B, L � linear operators acting in it. Consider the equation

But = Lu+ f, t ∈ (0, T ), (T ≤ ∞). (1)

Boundary value problem for the equation (1) is an abstract form many boundary value

problems for equations and systems of equations in partial to integral-di�erential equations.

Even in the simplest class of equations includes a signi�cant number of problems arising in

mathematical physics.

The study of the equation (1) Sobolev type in di�erent cases space E and the operator B,L

engaged many mathematicians, among them Weierstrass, Kronecker, F.R. Gantmakher, J.E.

Boyarintsev, Mathematics from school S.G. Crane, V.B. Osipov, S.D. Adelman, S.P. Zubov,

K.I. Chernyshev, R.E. Showalter, A.G. Rutkas, N.I. Radbel, N.A. Sidorov, M.V. Falaleev, A.I.

Kozhanov, A. Favini, G.A. Sviridyuk, V.E. Fedorov, I.V. Melnikova, M.A. Alshansky and others.

The equation of the form (1), which is not a Sobolev-type equation in abstract form was

studied, for example, R. Beals, NV Kislov, B. Greenberg, K.V.M. van der Mee, P.F. Zveyfel,

S.G. Pyatkov, P. Grisvard. Among the methods used to study the solvability of boundary

value problems for these equations can be highlight the variational method based on projection

theorems Lax-Milgram, methods of group theory, Fourier method (Eigenfunction expansion).

For equations of Sobolev type or close to them, and also for some equations that do not

belong to the Sobolev type, correct regular Cauchy problem or task that is close to it. other

situation if no equation is an equation of type Sobolev (usually, this means that the spectrum

of the operator B contains both positive and in�nite subset negative real axis). Earlier in

the works M.S. Baouendi, R. Beals, M. Gevrey, N.V. Kislov, S.D. Pagani, S.A. Tersenov were

studied correct boundary value problems for model equations of the form (1). In this case, study

questions of solvability, uniqueness and stability making a number of problems, mainly related

to the fact, at this time interval the solution of this problem is not always exist. As a rule, it

exists (for example, the decision of the initial boundary value problem), but at some small time

gap, and then can disintegrate in the sense that the solution or derivatives thereof may apply

to the ∞. An example be the case when the coe�cients of the equation at some surface in the

job equation misbehave, for example, refer to ∞.

The purpose of the work. The main purpose is the proof of existence and uniqueness

theorems, study of the properties of solutions of local and nonlocal boundary value problems

for operator-di�erential equations of mixed type, as well as study Application of the results for

the model equations odd order with changing time direction.

Methods. In the study of local and nonlocal boundary value problems for operator-

di�erential equations of mixed such as the techniques and methods used were developed for

tasks initial data, soluble in the whole time. Here �rst all should be allocated monograph O.A.

Ladyzhenskaya, V.A. Solonnikov, N.I. Uraltseva (1967), as well as monographs S.G. Pyatkov
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(2000, 2002). It uses methods of functional analysis methods of the theory of partial di�erential

equations derivatives.

In the proof of the existence of the desired solution to the problem Gevrey third-order

equation using the potential method by which the boundary value problem is reduced to the

investigation of a system of singular integral equations with respect to which we note monograph

N.F. Gakhov (1963), N. Muskhelishvili (1962), L.G. Mikhailov (1966), T.D. Dzuraev (1979).

Scienti�c novelty. The main obtained in the thesis results:

• investigated marginal Gevrey-type problems for new classes of operator-di�erential

equations of mixed type with an arbitrary dissipative operator in the main part;

• theorems of existence of a generalized solution, studied the smoothness of solutions in

weighted Sobolev spaces, and the applications of the results to the equations of odd order with

changing time direction;

• proved the solvability of a wide class of nonlocal boundary value problems for operator-

di�erential equations of mixed type with an operator satisfying the condition Kato-sectoriality

in the main part, and the question of the smoothness of the solutions of these problems in

weighted Sobolev spaces;

• for a third-order equations with one spatial variable with multiple characteristics theorems
of solvability in Holder spaces of boundary problems such as Gevrey.

All results are new.

Testing of work. The results obtained in the thesis were reported and discussed

at the Seminar at the Department of Di�erential Equations of Kazan (Volga) Federal

University under the direction of D.Sc., Professor V.I. Zhegalov (Kazan 2015) at the joint

seminar of the department of mathematical analysis NEFU (Yakutsk: 2014, 2015), research

institutes Mathematics NEFU ¾Nonclassical di�erential equations, controlled processes and

applications¿ (director Dr., Professor I.E. Egorov), on XLVII�XLIX International scienti�c

student conferences ¾ Student and scienti�c and technical progress ¿ (Novosibirsk: 2009�

2012); to XIX, XXI International Conference of Students and young scientists ¾Lomonosov¿

(2012, 2014: Moscow) at the III Russian Scienti�c Conference and VII Russian School-Seminar

students, graduate students, young scientists and Professionals ¾Mathematical modeling of

the Nordic Russian territories¿ (Yakutsk: 2012); at the International Conference dedicated to

the 80th anniversary of from the date of the birth of Academician M.M. Lavrentyev ¾Inverse

and ill-posed problems of mathematical physics ¿ (Novosibirsk: 2012); at the IV International

Youth Scienti�c School-Conference ¾Theory and Computational Methods for Inverse and ill-

posed problems ¿ (Novosibirsk: 2012); at the International Conference dedicated to the 105th

anniversary of the birth of S.L. Sobolev (Novosibirsk: 2013); at the VII International Conference

on Mathematical Modelling (Yakutsk: 2014); at the International Conference ¾Di�erential

equations and mathematical modeling¿ (Ulan-Ude: 2015).

The work was supported by the Russian Ministry of Education in the framework of public
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tasks to perform scienti�c research work: in the years 2012�2014. (Project 4402) for 2014-

2016. (Project 3047), the federal program ¾Scienti�c and scienti�c-pedagogical personnel of

innovative Russia¿ in the 2009�2013 years .: (GC 02.740.11.0609), the Federal Target Program

¾Scienti�c and scienti�c-pedagogical personnel of innovative Russia¿ in the 2009�2013. Åvent

1.3.2 ¾Conduct research targets graduate students¿ (The Agreement 14.132.21.1350).

Publication. The main results of the thesis were published 25 works of the author: 8 articles

[1�8], 17 abstracts [9�25].

In a joint paper [7] setting goals, theorems, proofs idea solvability of boundary value problems

belong to S.G. Pyatkov.

8 articles [1�8] published in journals from the list of peer-reviewed scienti�c publications

HAC, including article 3 [5�7] (1 article translated) are included in the international database

of abstracts and citation systems Web of Science, Scopus.

The structure and scope of work. The thesis consists of an introduction, three chapters,

containing 8 paragraphs, conclusion and bibliography. Total volume is 112 pages. References

contains 139 names.

Summary of the thesis

In the introduction the urgency of the dissertation topics given the historical information

on the topic of the thesis, and brie�y describes the content of the work.

In the �rst chapter, consisting of three sections, we consider boundary value problems for

operator-di�erential equations of the form

Au ≡ But − Lu = f(x, t), (2)

where the linear operators B,L de�ned in this Hilbert space E, and the operator B is self-

adjoint. Boundary conditions are

P+u(0) = u0, P−u(T ) = uT , (3)

where P+, P− � spectral projection of operator B, that meet positive and negative parts of

the spectrum. It is not assumed that the operator B is reversible, in particular, B can have

a nonzero kernel, and the spectrum of the operator B can contain both in�nite subset of the

positive and negative semi-axes.

Basic assumptions about the operators L,B are as follows.

I) L - maximal dissipative operator, and there is a Hilbert space F1, densely imbedded in the

E, such that D(L∗) ⊂ F1 ⊂ E, and there is a constant δ0 > 0 such that Re(−L∗u, u) ≥ δ0∥u∥2F1

for all u ∈ D(L∗), where L∗ - adjoint operator.

The condition I) implies that the operator L∗ � also maximal dissipative operator, and

0 ∈ ρ(L) ∩ ρ(L∗), moreover, {Reλ ≥ 0} ⊂ ρ(L) ∩ ρ(L∗).
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II) The operator B is self-adjoint in E, and F1 ⊂ D(|B|1/2) densely.
Let F2 � class of fuctions u ∈ F1, such that u represented in the form u = L−1v, where

v ∈ F ′
1, and ∥u∥F2 = ∥L−1v∥F1 + ∥v∥F ′

1
= ∥u∥F1 + ∥Lu∥F ′

1
. Then D(L) ⊂ F2 ⊂ F1.

De�ne the space H as the completion of D(|B|1/2) in the norm

∥|B|1/2v∥ = ∥u∥H .

As follows from the de�nition, |B|1/2 ∈ L(H,E).

Let H1 = {v ∈ L2(0, T ;D(L∗)), vt ∈ L2(0, T ;F1)}.
De�nition 1.1.1 The function u ∈ L2(0, T ;F1) is called a generalized solution of problem

(2), (3), if there are ũ0, ũT ∈ H, such that P−ũ0 = ũ0, P
+ũT = ũT , and the equality

T∫
0

(−(Bu, vt)− (u, L∗v))dt+ (BuT , v(T ))− (Bu0, v(0))+

+(BũT , v(T ))− (Bũ0, v(0)) =

T∫
0

(f, v) dt

(4)

for all v ∈ L2(0, T ;D(L∗)), vt ∈ L2(0, T ;F1)

Theorem 1.1.1 Let that conditions I), II). Then for any f ∈ L2(0, T ;F
′
1), u0, uT ∈ H

there exists a generalized solution u ∈ L2(0, T ;F1) of the boundary value problem (2), (3) in

the sense of de�nition 1.1.1.

Enter additional conditions:

III) Re(−Lu, u) ≥ δ0∥u∥2F1
, ∀u ∈ D(L);

IV) There are constants c > 0 and θ ∈ (0, 1), such that

|(Bu, u)| ≤ c∥u∥2θF1
∥L−1Bu∥2(1−θ)

F1
∀u ∈ F1;

V) B|F1 ∈ L(F1, E).

Note that ∥L−1Bu∥F1 ≤ c∥Bu∥F ′
1
≤ c1∥u∥F1 .

If the conditions of the Kato-sectorial operator L and the conditions of Theorem 1.1.1, we

can show that the conditions III) and IV) are unnecessary, they are always satis�ed.

Let g(x) - almost everywhere positive in G function. We de�ne the space L2,g(G;H) (H -

Banach space) as the space of strongly measurable functions de�ned in G with values in H and

such that

∥u∥L2,g(G;H) =

∫
G

g(x)∥u(x)∥2Hdx

1/2

< ∞.

Let φ(t) = t2α(T − t)2α, where α = 1
2(1−θ)

.

Theorem 1.1.2 If the conditions I)-IV) and ft ∈ L2(0, T ;F
′
1), then the generalized

solution obtained in Theorem 1.1.1, has the property that there is a generalized derivative ut ∈
L2,φ(0, T ;F1). If in addition the condition V) and f ∈ L2,φ(0, T ;E), then u ∈ L2,φ(0, T ;D(L)).
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In section 1.2 under the assumption that φi(t) = t2iα(T − t)2iα, where α = 1
2(1−θ)

, the

following theorem is proved.

Theorem 1.2.1 If the conditions I)-IV) and ∂i
tf ∈ L2,φi

(0, T ;F ′
1) (i = 0, 1, . . . ,m),

then generalized solution obtained in Theorem 1.1.1, has the property: There are generalized

derivatives ∂i
tand ∈ L2,φi

(0, T ;F1) (i = 0, 1, . . . ,m). If in addition the condition V) and

∂i
tf ∈ L2,φi+1

(0, T ;E) (i = 0, 1, . . . ,m− 1), then u ∈ L2,φi+1
(0, T ;D(L)).

Section 1.3 is devoted to the study of boundary value problems for operator-di�erential

equations of the form

B(t)ut − L(t)u = f(t), t ∈ (0, T ), T ≤ ∞ (5)

where L(t) : E → E and B(t) : E → E � family of linear operators de�ned in a Hilbert space

E. It does not assume that B is reversible.

It is further assumed that the operator B(0) : E → E and B(T ) : E → E (if T < ∞)

are self-adjoint. In this case, you can determine the spectral projections of E±(0), E±(T ) of

these operators, the respective positive and negative parts of the spectrum B(0) and B(T )

respectively. For example, if Eλ(0) � spectral decomposition of B(0), then E−(0) = E−0,

E+(0) = I − E0 (I � unit operator). Thus, E±
0 B(0) = B(0)E±

0 , (E
+ − E−)B(0) = |B(0)|.

We supplement the equation (5) boundary conditions

E+(0)u(0) = u+
0 , lim

t→∞
u(t) = 0 (T = ∞), (6)

E+(0)u(0) = h11E
−(0)u(0) + h12E

+(T )u(T ) + u+
0 , (7)

E−(T )u(T ) = h21E
−(0)u(0) + h22E

+(T )u(T ) + u−
T (T < ∞), (8)

where hij are linear operators properties described later. The second condition in the (6) is the

same as u(t) ∈ L2(0,∞;E).

We �x a parameter m = 0, 1, 2, . . . and assume that the linear operators L(t), B(t) : E → E,

depending on the parameter t ∈ (0, T ), satisfy the following conditions.

(I) There is a complex Hilbert space H1, densely stacked in the E, such that L(t) ∈ L(t) ∈
Wm

∞(0, T ;L(H1;H
′
1)) and B(t) ∈ W

max(1,m)
∞ (0, T ; L(H1;H

′
1)).

(II) Operators B(t) (t ∈ [0, T ]) are symmetric in the sense that (B(t)u, v) = (u,B(t)v)

for all u, v ∈ H1. Operators B(0) : E → E and B(T ) : E → E (if T < ∞) are self-adjoint

in E; H1 ⊂ D(|B(0)|1/2) and H1 ⊂ D(|B(T )|1/2) and both inclusions are dense. Ñóùåñòâóåò

ïîëîæèòåëüíàÿ ïîñòîÿííàÿ δ0 > 0 òàêàÿ, ÷òî

Re ((−L(t) + (i− 1

2
)Bt(t))u, u) ≥ δ0∥u∥2H1

, i = 0, 1, 2, . . . ,m

for all u ∈ H1 and almost all t ∈ (0, T ).

Note that the W 0
∞(0, T ;L(H1;H

′
1)) = L∞(0, T ;L(H1;H

′
1)). When the condition (I) and

change the operator-function B(t) on a set of measure zero, if necessary, we can assume that
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B(t) ∈ C([0, T ];L(H1;H
′
1)). Further we assume that this condition is satis�ed. In addition, the

condition (I) ensures that for every u(t) ∈ W 1
2 (0, T ;H1), the function B(t)u(t) ∈ L2(0, T ;H

′
1)

has generalized derivative d
dt
B(t)u(t), and

d

dt
B(t)u(t) = B(t)ut(t) +Bt(t)u(t),

where ut, Bt � generalized derivatives of u(t), B(t). Also (Bt(t)u, v) = (u,Bt(t)v) for all u, v ∈ H1

and almost all t ∈ (0, T ).

De�ne the space F0 = D(|B(0)|1/2)/ kerB(0), G0 = D(|B(T )|1/2)/ kerB(T ), F±
0 = {u ∈

F0 : E±(0)u = u}, G±
0 = {u ∈ G0 : E±(T )u = u}. LetF1 = H1/(kerB(0) ∩ H1),

G1 = H1/(kerB(T ) ∩ H1). Condition (I) ensures that F1, G1 � dense subspace F0, G0

respectively. We introduce the norm in F0, G0 using equations (u, v)F0 = (B(0)J(0)u, v),

(u, v)G0 = (B(T )J(T )u, v), where J(0) = E+(0) − E−(0) and J(T ) = E+(T ) − E−(T ).

Accordingly, the symbols [u, v]F0 = (B(0)u, v), [u, v]G0 = (B(T )u, v) denote the inde�nite

metric in F0 and G0. The norms and scalar products in F±
0 and G±

0 are similar to the norms

and scalar products F0, G0 respectively. Construct space F−1 and G−1 as the completion of

F0, G0 regulations regarding

∥u∥F−1 = ∥B(0)u∥H′
1
, ∥u∥G−1 = ∥B(T )u∥H′

1
.

We have F1 ⊂ F0 ⊂ F−1 è G1 ⊂ G0 ⊂ G−1.

Operators hij in (7), (8), are supposed to satisfy the conditions:

h11 ∈ L(F−
0 , F+

0 ), h12 ∈ L(G+
0 , F

+
0 ), h21 ∈ L(F−

0 , G−
0 ), h22 ∈ L(G+

0 , G
−
0 ). (9)

We can de�ne the operator

H =

(
h11 h1,2

h21 h22

)
: F−

0 ×G+
0 → F+

0 ×G−
0 .

In accordance with the terms on hij operator H de�nes a linear continuous mapping of F−
0 ×G+

0

in F+
0 ×G−

0 . We assume that its norm ρH satis�es

ρH < 1. (10)

For i ≥ 1 and T < ∞ let φi(t) = t2i(T − t)2i. For T = ∞, φi ∈ C∞([0,∞)
)
, φi(t) = t2i for

t ≤ 1, φi(t) = 2 for t ≥ 2, and 1 ≤ φi(t) ≤ 2 for t ∈ [1, 2]. Let φ0(t) ≡ 1 and φr = 1/φ−r for

r < 0. Given a Hilbert space H and integer l ≥ 0, s, denoted by W l,s(H) (l = 0, 1, . . .) closure

of C∞
0 (0, T ;H) in the norm

∥v∥2W l,s(H) =
l∑

i=0

∥∥√φi−sv
(i)
∥∥2
L2(0,T ;H)

.

We have a W 0,0(H) = L2(0, T ;H). The main results may be summarized as follows.
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Theorem 1.3.1 Suppose that T = ∞, f ∈ Wm,0(H ′
1) (m = 0, 1, . . .), u+

0 ∈ F+
0 , conditions

(I)�(II) and (10) are satis�ed. Then there exists a solution u(t) ∈ Wm,0(H1) of the problem

(5), (6), such that
√
φi

di+1

dti+1B(t)u ∈ L2(0, T ;H
′
1), i = 0, 1, . . . ,m. The trace u(0) ∈ F−1 of this

solution belongs to the space F0. Equation (5), written in the form

(Bu)t −Btu− Lu = f,

performed in the space L2(0, T ;H
′
1). If an additional m ≥ 1,

√
φ1f ∈ L2(0, T ;E), B(t) ∈

L∞(0, T ;L(H1, E)), then we can assume that L(t)u(t) ∈ L2,φ1(0, T ;E). And if the operator

L is independent of t,
√
φi+1

di

dti
f ∈ L2(0, T ;E) (i = 0, 1, 2, . . . ,m − 1) and B(t) ∈

Wm−1
∞ (0, T ;L(H1, E)), then di

dti
Lu(t) ∈ L2,φi+1

(0, T ;E) (i = 0, 1, 2, . . . ,m− 1).

Theorem 1.3.2 Suppose that T < ∞, f ∈ Wm,0(H ′
1) (m = 0, 1, . . .), u+

0 ∈ F+
0 , u−

T ∈ G−
0 ,

conditions (I)�(II) and (10) are satis�ed. Then there exists a solution u(t) ∈ Wm,0(H1) of the

problem (5), (7), (8), such that
√
φi

di+1

dti+1B(t)u ∈ L2(0, T ;H
′
1), i = 0, 1, . . . ,m. Traces u(0) ∈ F−1

and u(T ) ∈ G−1 (äëÿ T ̸= ∞) of these decisions belong to the spaces F0 and G0 respectively.

Equation (5), written in the form

(Bu)t −Btu− Lu = f,

performed in the space L2(0, T ;H
′
1). If further m ≥ 1,

√
φ1f ∈ L2(0, T ;E) and B(t) ∈

L∞(0, T ;L(H1, E)), then we can assume that L(t)u(t) ∈ L2,φ1(0, T ;E). And if the operator

L is independent of t,
√
φi+1

di

dti
f ∈ L2(0, T ;E) (i = 0, 1, 2, . . . ,m − 1) and B(t) ∈

Wm−1
∞ (0, T ;L(H1, E)), then di

dti
Lu(t) ∈ L2,φi+1

(0, T ;E) (i = 0, 1, 2, . . . ,m− 1).

Lemma 1.3.3 Let u(t) ∈ W and

(F1, F−1)1/2,2 = F0, (G1, G−1)1/2,2 = G0. (11)

Then traces u(0) and u(T ) belong to the spaces F0 and G0 respectively, and

∥u(0)∥F0 + ∥u(T )∥G0 ≤ c∥u∥W

for some number c, does not depend on u. Moreover, all the elements v0 ∈ F0 è vT ∈ G0 there

is a function v(t) ∈ W , such that v(0) = v0 è v(T ) = vT .

Theorem 1.3.3 Let condition (11) and the condition of the theorem 1.3.1 or Theorem 1.3.2

are ful�lled. Then there is no more than one solution of the problem (5), (6) of problem (5),

(7), (8) respectively.

The second chapter consists of three sections. In Section 2.1 presents the results of

applications received in Chapter 1.

The equation of odd order with a changing direction of time

g(x)ut − Lu = f, (12)
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u|t=0 = u0(x), x ∈ G+, u|t=T = uT (x), x ∈ G−, (13)

u(i)(0) = u(i)(1) = 0, i = 0, 1, 2, ...,m− 1, (14)

u(m)(0) = 0, (15)

where L � di�erential operator of the form

Lu = (−1)m+1

2m+1∑
i=0

ai(x)u
(i), a2m+1 = 1, (16)

L∗v = (−1)m+1
2m+1∑
i=0

(ai(x)v)
(i) (17)

and g(x) ∈ L1(0, 1) � real, measurable on (0, 1) function such that there exist open sets

G+, G− ⊂ (0, 1) with the property µ(G
+\G+) = 0, µ(G

−\G−) = 0, and g(x) > 0 almost

everywhere on G+, g(x) < 0 almost everywhere on G− and g(x) = 0 on G\(G+ ∪G
−
).

We assume that

ai ∈ W i
∞(0, 1), i = 0, 1, . . . , 2m. (18)

We believe that D(L) = {u ∈ W 2m+1
2 (0, 1) : u satis�es (14), (15)}, D(L∗) = {u ∈

W 2m+1
2 (0, 1) : performed (14) and u(m)(1) = 0} and there is a constant δ0 > 0 such that

Re(−Lu, u) ≥ δ0∥u∥2Wm
2 (0,1), Re(−L∗u, u) ≥ δ0∥u∥2Wm

2 (0,1) (19)

for all u ∈ D(L) and u ∈ D(L∗) respectively.

Take

θ =
m+ 2− s

2(m+ 1− s)
, (20)

where 1/2 < s < m+ 1, if g ∈ L1(0, 1)) and 0 ≤ s < m+ 1, s ̸= 1/2, if g ∈ L2(0, 1).

Theorem 2.1.1 Suppose that the condition (19) and above conditions on the coe�cients

of the operator L (18) are satis�ed and a function g ∈ L1(0, 1). Then, if f ∈
L2(0, T ;W

−m
2 (0, 1)), u0 ∈ L2,g(G

+), uT ∈ L2,g(G
−), there is a generalized solution of problem

(12)-(15) of class u ∈ L2(0, T ;W
m
2 (0, 1)), g(x)ut ∈ L2(0, T ; (Ŵ

m+1
2 (0, 1))′). If, in addition,

suppose that ft ∈ L2,φ(0, T ;W
−m
2 (0, 1)), where φ(t) = t2θ(T − t)2θ, and the parameter θ de�ned

by the equation (20), then the solution has the following property: u ∈ L2,φ(0, T ;W
m+1
2 (0, 1)),

ut ∈ L2,φ(0, T ;W
m
2 (0, 1)). If in addition g ∈ L2(0, 1), f ∈ L2,φ(0, T ; L2(0, 1)), hen the solution

also has the property u ∈ L2,φ(0, T ;W
2m+1
2 (0, 1)). In the latter case, equation (12) holds almost

everywhere in â Q = (0, 1)× (0, T ), and all generalized derivatives in equation exist.

In Section 2.2 in �eld Q is considered a third-order equation changing time direction

sgnxuttt + uxx = f(x, t), (21)
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where Q is a rectangle Ω× (0, T ), Ω = (−1, 1), 0 < T < +∞.

The solution u(x, t) of the equation (21) is sought in the performance of initial conditions

u(x, 0) = u(x, T ) = 0, x ∈ Ω,

ut(x, 0) = u0(x), x ∈ (0, 1), ut(x, T ) = uT (x), x ∈ (−1, 0)
(22)

and homogeneous boundary conditions

u(−1, t) = u(1, t) = 0, t ∈ (0, T ). (23)

We introduce the notation: (u, v) =
∫
Ω

uv̄ dx � scalar product in L2(Ω). By a generalized

solution of problem (21)�(23) understand the function u(x, t) such that u ∈
◦
W 1

2(Q), and

performed the following integral identity

T∫
0

[(ut, sgn x vtt)− (ux, vx)] dt+

1∫
0

u0(x)vt(x, 0) dx+

+

0∫
−1

uT (x)vt(x, T ) dx =

T∫
0

(f(x, t), v) dt

(24)

for any function v(x, t) ∈
◦
W 1

2(Q), such that vtt ∈ L2(Q), and satisfying the conditions

vt(x, T ) = 0, 0 < x < 1, vt(x, 0) = 0, −1 < x < 0. (25)

Denote by H1 Hilbert space of functions v(x, t) ∈
◦
W 1

2(Q), such that vtt ∈ L2(Q). As norm

in H1 we take value

∥u∥H1 = (∥u∥2◦
W 1

2(Q)
+ ∥utt∥2L2(Q))

1/2.

Theorem 2.2.1 Let the function f(x, t) ∈ L2(0, T ;W
−1
2 (Ω)), u0(x), uT (x) ∈ L2(Ω). Then

the boundary value problem (21)− (23) has a generalized solution u(x, t) ∈
◦
W 1

2(Q).

In section 2.3 in the �eld Q is considered a third-order equation changing time direction

sgnxut − uxxx = f(x, t). (26)

The solution u(x, t) of the equation (26) is sought in the performance of initial conditions

u(x, 0) = u0(x), x ∈ (0, 1), u(x, T ) = uT (x), x ∈ (−1, 0) (27)

and homogeneous boundary conditions

u(−1, t) = ux(−1, t) = u(1, t) = 0, t ∈ (0, T ). (28)

In the book of T.D. Dzuraev (1979) solvability of the boundary value problem for the

equation (26) is reduced to the singular system of integral equations, which is in the class of

regular solutions unambiguously and unconditionally solvable.
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By a generalized solution of the boundary value problem (26)−(28) understand the function

u(x, t), such that u ∈ L2(0, T ;
◦
W 1

2(−1, 1)), ut ∈ L2(Q), and the following integral identity:

−
T∫

0

[(u, sgn xvt) + (ux, vxx)] dt =

=

T∫
0

(f(x, t)v) dt+

0∫
−1

uT (x) v(x, T )dx+

1∫
0

u0(x)v(x, 0)dx

(29)

for any function v(x, t) ∈ L2(0, T ;W
2
2 (−1, 1)), such that vt ∈ L2(Q), and satisfying the

conditions
v(−1, t) = v(1, t) = 0, vx(1, t) = 0,

v(x, T ) = 0, 0 < x < 1, v(x, 0) = 0, −1 < x < 0.
(30)

Let H2 the Hilbert space of functions v(x, t) ∈ L2(0, T ;
◦
W 1

2(−1, 1) ∩W 2
2 (−1, 1)), such that

vt ∈ L2(Q) è vx(1, t) = 0. As a norm in H2 take the value

∥u∥H2 = (∥u∥2L2(0,T ;W 2
2 (−1,1)) + ∥ut∥2L2(Q))

1/2.

Theorem 2.3.1 Let the function f(x, t) ∈ L2(0, T ;W
−1
2 (Ω)), u0(x), uT (x) ∈ L2(Ω). Then

the boundary value problem (26)− (28) has generalized solution u ∈ L2(0, T ;
◦
W 1

2(−1, 1)).

The third chapter examines the Gevrey third order equation with multiple features

sgnx · ut − uxxx = 0. (31)

Part of the band Q, where x < 0 è x > 0, denoted by Q− and Q+. The solution of the equation

is sought from holder spaces H
p,p/3
x t (Q±), p = 3 + γ, 0 < γ < 1, satisfying the following initial

conditions

u(x, 0) = φ1(x), x > 0, u(x, T ) = φ2(x), x < 0, (32)

and bonding conditions

∂ku

∂xk
(−0, t) =

∂ku

∂xk
(+0, t) (k = 0, 1, 2). (33)

The solvability of the boundary value problem (31)-(33) reduces to the solvability of the

integral equation

4√
3
β1(t) +

1

π

T∫
0

φ

(
t

τ

)
β1(τ)

τ
dτ = Q1(t), φ(x) = x

1−γ
3
1− x

2
3

1− x
. (34)

The integral equation (34) is an equation with a kernel that is homogeneous of degree −1.

Introducing the new independent variables t = Te−y, τ = Te−x, we have Wiener-Hopf integral

equation

Theorem 3.2.1 Let φ1, φ2 ∈ Hp (p = 3 + γ), 0 < γ < 1. Then under the 4 conditions of

solvability Ls(φ1, φ2) = 0, s = 1, 2, 3, 4, there exists a unique solution of the equation (31) at

Q of space H
p,
x

p/3
t (Q±), satisfying the conditions (32), (33).
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