Gender specificity of colorectal cancer in the Republic of Tatarstan

Gataullin B.I., Khasanov R.S., Savelyev A.A., Gataullin I.G. Kazan Federal University, 420008, Kremlevskaya 18, Kazan, Russia

Abstract

The purpose of the study: to develop an expert system based on the construction of a «decision tree» for predicting the 5-year survival rate of patients with colorectal cancer. Material and Methods. T he study included 654 patients with colorectal cancer (CRC) who were treated from 2013 to 2015, including 434 men and 220 women. The average age of patients was $64,1 \pm 10,2$ years. All patients underwent genetic analysis for the presence of a mutation in the K-ras gene from the primary tumor. Results. For the Republic of Tatarstan, there are regional features of mutation of the K-ras gene: the frequency of mutations in tumors in men was less frequent (20.3 %) than in women (37.7 %), in patients of Slavic nationality, mutations were slightly more frequent - 39 % than in Tatars - 21 %. The gender approach to assessing long-term treatment results showed that in men with colorectal cancer, the most favorable treatment results were observed in patients with tumors in stage T1-2N0M0, regardless of the differentiation of the tumor and its mutational status. Low-grade tumors with any T should be considered prognostically unfavorable in men, with the presence of regional metastases and mutation of the K-ras gene, even in the absence of distant metastases: no patient lived 5 years. Based on the construction of a «decision tree», the most favorable treatment results were observed in female patients with tumors in stage T1-2-3N0M0 at the age of 70 years (5-year survival rate of 90 %), with tumors T1-2N0M0 at the age of 70 years (5-year survival rate of 81.8 %), regardless of the tumor differentiation and its mutational status. Tumors of any differentiation are prognostically unfavorable for women of the T3-4N0 stage with the presence of distant metastases (6 % of patients lived 5 years) and lowdifferentiated stage T4N0M0 tumors (5-year survival rate of 8 %). Conclusion. G ender- and age-associated features of the development and course of CRC are relevant for oncologists to choose effective diagnostic and therapeutic measures.

http://dx.doi.org/10.21294/1814-4861-2021-20-1-16-23

Keywords

Colorectal cancer, Gender, K-ras gene mutation, Long-term results, Regional features

References

 Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018 Nov; 68(6): 394-424. doi: 10.3322/caac.21492.

- [2] Antipova S.I., Antipov V.V., Shebeko N.G. Gender problems of oncology in Belarus. Meditsinskie novosti. 2013;
 3: 31 41. (in Russian)].
- [3] Kim S.E., Paik H.Y., Yoon H., Lee J.E., Kim N., Sung M.K. Sex-and gender-specific disparities in colorectal cancer risk. World J Gastroenterol. 2015 May 7; 21(17): 5167-75. doi: 10.3748/wjg.v21.i17.5167.
- [4] Zharkova O.S., Sharopin K.A., Seidova A.S., Berestneva E.V., Osadchaya I.A. Construction of decision support systems in medicine based decision tree. Modern High Technologies. 2016; 6-1:33-37. (in Russian)
- [5] Smagulova K.K., Kaydarova D.R., Chichua N.A., Ishkinin E.I. Study of the frequency and spectrum of the K-RAS gene mutation in patients with colorectal cancer (CRC) depending on the extent of the process. Modern Problems of Science and Education. 2019; 3. (in Russian)]. doi: 10.17513/spno.28909.
- [6] Vodolazhsky D.I., Antonets A.V., Dvadnenko K.V., Vladimirova L.Y., Gevorkyan Y.A., Kasatkin V.F., Maksimov A.Y. Association of K-RAS mutant type with clinicopathological features of colorectal cancer in patietns in the south of Russia. 2014; 1: 65-68. (in Russian)].
- [7] Selcukbiricik F., Erdamar S., Ozkurt C.U., Molinas Mandel N., Demirelli F., Ozguroglu M., Tural D., Buyukunal E., Serdengecti S. The role of K-RAS and B-RAF mutations as biomarkers in metastatic colorectal cancer. J BUON. 2013 Jan-Mar; 18(1): 116-23.
- [8] Al-Allawi N.A., Ismaeel A.T., Ahmed N.Y., Merza N.S. The frequency and spectrum of K-ras mutations among Iraqi patients with sporadic colorectal carcinoma. Indian J Cancer. 2012 Jan-Mar; 49(1): 163-8. doi:10.4103/0019-509X.98943.
- [9] Segal G., Liebermann N., Klang S., Siegelmann-Daniel N., Beit-Or A., Klien B., Shoushan-Gutman L. Identification of K-RAS mutations in colorectal cancer patients in Israel. Harefuah. 2011 May; 150(5):447-50, 491.
- [10] Chaiyapan W., Duangpakdee P., Boonpipattanapong T., Kanngern S., Sangkhathat S. Somatic mutations of Kras and BRAF in Thai colorectal cancer and their prognostic value. Asian Pac J Cancer Prev. 2013; 14(1): 329-32. doi: 10.7314/apjcp.2013.14.1.329.
- [11] Malhotra P., Anwar M., Nanda N., Kochhar R., Wig J.D., Vaiphei K., Mahmood S. Alterations in K-ras, APC and p53-multiple genetic pathway in colorectal cancer among Indians. Tumour Biol. 2013 Jun; 34(3): 1901-11. doi: 10.1007/s13277-013-0734-y.
- [12] Lee W.S., Baek J.H., Lee J.N., Lee W.K. Mutations in K-ras and epidermal growth factor receptor expression in Korean patients with stages III and IV colorectal cancer. Int J Surg Pathol. 2011 Apr; 19(2): 145-51. doi: 10.1177/1066896911400411.
- [13] Eli M., Mollayup A., Muattar Liu C., Zheng C., Bao Y.X. K-ras genetic mutation and influencing factor analysis for Han and Uygur nationality colorectal cancer patients. Int J Clin Exp Med. 2015 Jun 15; 8(6): 10168-77.
- [14] Gataullin I.G., Gordiev M.G., Shakirov R.K., Gataullin B.I. Clinical evaluation of gene mutations in K-RAS patients with colorectal cancer. Oncology Bulletin of the Volga region. 2016; 3(25): 85-88. (in Russian)].
- [15] Ilinskaya O.N., Kharitonova M.A., Doynikova A.N., Zelenikhin P.V., Gataullin B.I. Analysis of RAS-Mutation and Microbiom of Patients With Colorectal Cancer. Int J Pharm Res. 2018; 10 (1): 307-313.
- [16] Samowitz W.S., Curtin K., Schaffer D., Robertson M., Leppert M., Slattery M.L. Relationship of Ki-ras mutations in colon cancers to tumor location, stage, and survival: a population-based study. Cancer Epidemiol Biomarkers Prev. 2000 Nov; 9(11): 1193-7.
- [17] Ferlay J., Soerjomataram I., Dikshit R., Eser S., Mathers C., Rebelo M., Parkin D.M., Forman D., Bray F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015 Mar 1; 136(5): E359-86. doi: 10.1002/ijc.29210.
- [18] Barzi A., Lenz A.M., Labonte M.J., Lenz H.J. Molecular pathways:Estrogen pathway in colorectal cancer. Clin Cancer Res. 2013 Nov 1; 19(21): 5842-8. doi: 10.1158/1078-0432.CCR-13-0325.
- [19] Maingi J.W., Tang S., Liu S., Ngenya W., Bao E. Targeting estrogen receptors in colorectal cancer. Mol Biol Rep. 2020 May; 47(5): 4087-4091. doi: 10.1007/s11033-020-05414-6.