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Abstract

Mutations in SHANK genes play an undisputed role in neuropsychiatric disorders. Until now,
research has focused on the postsynaptic function of SHANKs, and prominent postsynaptic
alterations in glutamatergic signal transmission have been reported in Shank KO mouse models.
Recent studies have also suggested a possible presynaptic function of SHANK proteins, but
these  remain  poorly  defined.  In  this  study,  we  examined  how  SHANK2  can  mediate
electrophysiological, molecular, and behavioral effects by conditionally overexpressing either
wild-type SHANK2A or the extrasynaptic SHANK2A(R462X) variant. SHANK2A overexpression
affected  pre-  and  postsynaptic  targets  and  revealed  a  reversible,  development-dependent
autism  spectrum  disorder-like  behavior.  SHANK2A  also  mediated  redistribution  of  Ca2+-
permeable AMPA receptors between apical and basal hippocampal CA1 dendrites, leading to
impaired synaptic plasticity in the basal dendrites. Moreover, SHANK2A overexpression reduced
social  interaction  and  increased  the  excitatory  noise  in  the  olfactory  cortex  during  odor
processing. In contrast, overexpression of the extrasynaptic SHANK2A(R462X) variant did not
impair hippocampal synaptic plasticity, but still altered the expression of presynaptic/axonal
signaling  proteins.  We  also  observed  an  attention-deficit/hyperactivity-like  behavior  and
improved social interaction along with enhanced signal-to-noise ratio in cortical odor processing.
Our results suggest that the disruption of pre- and postsynaptic SHANK2 functions caused by
SHANK2 mutations has a strong impact on social behavior. These findings indicate that pre- and
postsynaptic SHANK2 actions cooperate for normal neuronal function, and that an imbalance
between these functions may lead to different neuropsychiatric disorders.
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