Science of the Total Environment 760 (2021) 143397

Contents lists available at ScienceDirect

Science of the Total Environment

journal homepage: www.elsevier.com/locate/scitotenv

Contribution of the Fenton reaction and ligninolytic enzymes to soil organic matter mineralisation under anoxic conditions

Carolina Merino ^{a,b,c,*}, Francisco Matus ^{b,c}, Yakov Kuzyakov ^{d,f,g}, Jens Dyckmans ^e, Svenja Stock ^h, Michaela A. Dippold ^h

^a Center of Plant, Soil Interaction and Natural Resources Biotechnology Scientific and Technological Bioresource Nucleus (BIOREN), Temuco, Chile

^b Laboratory of Conservation and Dynamic of Volcanic Soils, Department of Chemical Sciences and Natural Resources, Universidad de La Frontera, Temuco, Chile

^c Network for Extreme Environmental Research (NEXER), Universidad de La Frontera, Temuco, Chile

^d Division of Agricultural Soil Science, University of Gottingen, Gottingen, Germany

^e Centre for Stable Isotope Research and Analysis, University of Gottingen, Gottingen, Germany

^f Institute of Environmental Sciences, Kazan Federal University, 420049 Kazan, Russia

^g Agro-Technology Institute, RUDN University, 117198 Moscow, Russia

^h Biogeochemistry of Agroecosystems, University of Gottingen, Gottingen, Germany

HIGHLIGHTS

GRAPHICAL ABSTRACT

Lignin pero

- Fenton reaction and oxidative enzymes explain high CO₂ efflux from anaerobic soils.
- Synergism of Fenton reaction and lignin peroxidase activity induce high CO₂ efflux.
- H₂¹⁸O₂ labelling allows identifying and differentiating abiotic oxidative processes.

ARTICLE INFO

Article history: Received 3 June 2020 Received in revised form 26 October 2020 Accepted 28 October 2020 Available online 5 November 2020

Editor: Paulo Pereira

Keywords: Fenton oxidation Anoxic environment Hydrogen peroxide Ligninolytic and oxidative enzymes Carbon cycle

ABSTRACT

Mechanisms of carbon dioxide (CO₂) release from soil in the absence of oxygen were studied considering the Fenton process, which encompasses the reaction of H_2O_2 with Fe(II) yielding a hydroxyl radical (•OH), in combination with manganese peroxidase (MnP) and lignin peroxidase (LiP). This study aimed to explain the high rate of soil organic matter (SOM) mineralisation and CO₂ release from humid temperate rainforest soils under oxygen-limited conditions. The investigated mechanisms challenge the traditional view that SOM mineralisation in rainforest is slow due to anaerobic (micro)environments under high precipitation and explain intensive CO₂ release even under oxygen limitation. We hypothesised that the Fenton reaction (FR) greatly contributes to the CO₂ released from SOM mineralised under anaerobic conditions especially in the presence of ligninolytic enzymes. We used a novel technique that combines labelled $H_2^{18}O_2$ and Fe(II) to induce the FR and measured CO¹⁸O, Fe(II) solubilisation, and peroxide consumption in a closed gas circulation system for 6 h. Maximal CO₂ amount was released when the FR was induced in combination with LiP addition. The CO₂ efflux with LiP was 10-fold that of abiotic FR reactions without enzymes, or in soils amended with MnP. This was consistent with i) the contribution of ¹⁸O from peroxide to CO₂ release, ii) peroxide consumption, and iii) Fe(II) solubilisation by FR.

Lignin structure

* Corresponding author at: Center of Plant, Soil Interaction and Natural Resources Biotechnology Scientific and Technological Bioresource Nucleus (BIOREN), Temuco, Chile. E-mail address: carolina.merino@ufrontera.cl (C. Merino).