ORIGINAL ARTICLE

The association of HFE gene H63D polymorphism with endurance athlete status and aerobic capacity: novel findings and a meta-analysis

Ekaterina A. Semenova^{1,2} · Eri Miyamoto-Mikami³ · Egor B. Akimov⁴ · Fatima Al-Khelaifi^{5,6} · Haruka Murakami⁷ → Hirofumi Zempo^{3,8} ← Elena S. Kostryukova Nikolay A. Kulemin Andrey K. Larin Oleg V. Borisov^{1,9} • Motohiko Miyachi⁷ • Daniil V. Popov¹⁰ • Eugenia A. Boulygina¹¹ • Mizuki Takaragawa³ • Hiroshi Kumagai^{3,12} · Hisashi Naito³ · Vladimir P. Pushkarev^{13,14,15} · Dmitry A. Dyatlov¹⁵ · Eugene V. Lekontsev^{16,17} · Yuliya E. Pushkareva¹⁸ · Liliya B. Andryushchenko¹⁹ · Mohamed A. Elrayess²⁰ · Edward V. Generozov¹ · Noriyuki Fuku³ · Ildus I. Ahmetov^{1,19,21,22}

Received: 7 August 2019 / Accepted: 16 January 2020 / Published online: 22 January 2020 © The Author(s) 2020

Abstract

Purpose Iron is an important component of the oxygen-binding proteins and may be critical to optimal athletic performance. Previous studies have suggested that the G allele of C/G rare variant (rs1799945), which causes H63D amino acid replacement, in the HFE is associated with elevated iron indexes and may give some advantage in endurance-oriented sports. The aim of the present study was to investigate the association between the HFE H63D polymorphism and elite endurance athlete status in Japanese and Russian populations, aerobic capacity and to perform a meta-analysis using current findings and three previous studies.

Methods The study involved 315 international-level endurance athletes (255 Russian and 60 Japanese) and 809 healthy controls (405 Russian and 404 Japanese). Genotyping was performed using micro-array analysis or by PCR. VO_{2max} in 46 male Russian endurance athletes was determined using gas analysis system.

Results The frequency of the iron-increasing CG/GG genotypes was significantly higher in Russian (38.0 vs 24.9%; OR 1.85, P = 0.0003) and Japanese (13.3 vs 5.0%; OR 2.95, P = 0.011) endurance athletes compared to ethnically matched controls. The meta-analysis using five cohorts (two French, Japanese, Spanish, and Russian; 586 athletes and 1416 controls) showed significant prevalence of the CG/GG genotypes in endurance athletes compared to controls (OR 1.96, 95% CI 1.58–2.45; $P = 1.7 \times 10^{-9}$). Furthermore, the HFE G allele was associated with high VO_{2max} in male athletes [CC: 61.8 (6.1), CG/GG: 66.3 (7.8) ml/min/kg; P = 0.036].

Conclusions We have shown that the *HFE* H63D polymorphism is strongly associated with elite endurance athlete status, regardless ethnicities and aerobic capacity in Russian athletes.

Keywords Gene · Genotype · Hemochromatosis · Endurance performance · Athletes

Abbreviations		HH	Hereditary hemochromatosis
CI	Confidence intervals	HWE	Hardy-Weinberg equilibrium
DNA	Deoxyribonucleic acid	PCR	Polymerase chain reaction
EDTA	Ethylenediaminetetraacetic acid	RFLP	Restriction fragment length polymorphism
GWAS	Genome-wide association studies	SNP	Single-nucleotide polymorphism
HFE	Homeostatic iron regulator (hemochromatosis gene)	STREGA	Strengthening the reporting of genetic association
		TFRC	Transferrin receptor
		VO_{2max}	Maximal oxygen consumption
Communicated by Michael Lindinger.			

i.akhmetov@ljmu.ac.uk

Extended author information available on the last page of the article

