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Abstract

© 2020 Institute of Sport.  All  rights reserved. Whole genome sequencing (WGS) has great
potential  to  explore  all  possible  DNA  variants  associated  with  physical  performance,
psychological  traits  and health conditions of  athletes.  Here we present,  for  the first  time,
annotation of genomic variants of elite athletes, based on the WGS of 20 Tatar male wrestlers.
The maximum number of high-quality variants per sample was over 3.8 M for single nucleotide
polymorphisms  (SNPs)  and  about  0.64  M  for  indels.  The  maximum  number  of  nonsense
mutations  was 148 single  nucleotide variants  (SNVs)  per  individual.  Athletes'  genomes on
average contained 18.9 nonsense SNPs in a homozygous state per sample, while non-Athletes'
exomes (Tatar controls, n = 19) contained 18 nonsense SNPs. Finally, we applied genomic data
for the association analysis and used reaction time (RT) as an example. Out of 1884 known
genome-wide significant SNPs related to RT, we identified four SNPs (KIF27 rs10125715, APC
rs518013,  TMEM229A rs7783359,  LRRN3 rs80054135) associated with RT in wrestlers.  The
cumulative  number  of  favourable  alleles  (KIF27  A,  APC  A,  TMEM229A  T,  LRRN3  T)  was
significantly correlated with RT both in wrestlers (P = 0.0003) and an independent cohort (n =
43) of physically active subjects (P = 0.029). Furthermore, we found that the frequencies of the
APC A  (53.3  vs  44.0%,  P  = 0.033)  and  LRRN3 T  (7.5  vs  2.8%,  P  = 0.009)  alleles  were
significantly  higher  in  elite  athletes  (n  = 107)  involved in  sports  with  RT as  an essential
component  of  performance  (combat  sports,  table  tennis  and  volleyball)  compared  to  less
successful (n = 176) athletes. The LRRN3 T allele was also over-represented in elite athletes
(7.5%) in comparison with 189 controls (2.9%, P = 0.009). In conclusion, we present the first
WGS study of athletes showing that WGS can be applied in sport and exercise science.
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