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a b s t r a c t 

An isobar generated by a line or point sink draining a confined semi-infinite aquifer is an analytic curve, to which 
a steady 2-D plane or axisymmetric Darcian flow converges. This sink may represent an excavation, ditch, or wadi 
on Earth, or a channel on Mars. The strength of the sink controls the form of the ditch depression: for 2-D flow, 
the shape of the isobar varies from a zero-depth channel to a semicircle; for axisymmetric flow, depressions as flat 
as a disk or as deep as a hemisphere are reconstructed. In the model of axisymmetric flow, a fictitious J.R. Philip’s 
point sink is mirrored by an infinite array of sinks and sources placed along a vertical line perpendicular to a 
horizontal water table. A topographic depression is kept at constant capillary pressure (water content, Kirchhoff
potential). None of these singularities belongs to the real flow domain, evaporating unsaturated Gardnerian soil. 
Saturated flow towards a triangular, empty or partially-filled ditch is tackled by conformal mappings and the 
solution of Riemann’s problem in a reference plane. The obtained seepage flow rate is used as a right-hand side 
in an ODE of a Cauchy problem, the solution of which gives the draw-up curves, i.e., the rise of the water level 
in an initially empty trench. HYDRUS-2D computations for flows in saturated and unsaturated soils match well 
the analytical solutions. The modeling results are applied to assessments of real hydrological fluxes on Earth and 
paleo-reconstructions of Martian hydrology-geomorphology. 

1. Introduction 

“I had to live in the desert before I could understand the full value of grass 
in a green ditch. ”

Ella Maillart 
Analytical models of 2-D seepage towards drainage ditches and 

trenches, constructed by civil, geotechnical, and agricultural engineers, 
used the machinery of complex variables ( Anderson, 2013 , Aravin and 
Numerov, 1953 , Bear, 1972 , Kirkham and Powers, 1972 , Polubarinova- 
Kochina, 1962 , 1977, hereafter abbreviated as PK-62,77, Skaggs et al., 
1999 , Strack, 1989 , Vedernikov, 1939 ), in particular, by tackling free 
boundaries of Darcian flows, the so-called phreatic surfaces. 

We recall (see, e.g., Radcliffe and Š im ů nek, 2010 ) that transient, 3- 
D, saturated-unsaturated flows in porous media (when both water and 
soil are incompressible) obey the Richards equation: 

𝜕𝜃

𝜕𝑡 
= ∇ ( 𝐾( 𝑝 )∇ ℎ ) (0) 

Abbreviations: ADE = , advective dispersion equation; BVP = , boundary value problem; DF = , Dupuit-Forchheimer; LHS, RHS = , left hand side, right hand side; ODE 
= , Ordinary Differential Equation; OSDP = , Optimal Shape Design Problem; PK-62,77 = , Polubarinova-Kochina, P.Ya., 1962. Theory of Ground Water Movement. 
Princeton University Press, Princeton. The second edition of the book (in Russian) was published in 1977, Nauka, Moscow.; VG = , van Genuchten. 
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where 𝜃( t, x, y, Z ) is the volumetric moisture content, ∇ is the nabla 
operator (in Cartesian or cylindrical coordinates), K ( p, x, y, Z ) is the 
hydraulic conductivity function, h ( t, x, y, Z ) = p + Z is the total head, 
p is the pressure head, Z is a vertical coordinate, and p ( 𝜃) is a capillary 
pressure (water retention) function, fixed for each soil. Eq. (0) involves 

the Darsy law 

→
𝑉 = − 𝐾( 𝑝 )∇ ℎ , where 

→
𝑉 is the Darcian flux vector, and the 

principle of mass conservation. 
Boundary value problems (hereafter abbreviated as BVPs) are solved 

for Eq. (0) by specifying initial conditions, e.g., 𝜃(0, x, y, Z ), as well as 
imposing physically meaningful boundary conditions (e.g., Dirichlet’s, 
Neumann’s). Only numerical codes like HYDRUS-3D ( Š im ů nek et al., 
2016 ) tackle such problems for arbitrary 3D transient flows. Eq. (0) is 
a highly nonlinear parabolic PDE. For steady flows, its LHS vanishes, 
and the equation becomes elliptic. If the flow is purely saturated and 
the porous medium is homogeneous, then K ( p ) = K s , where K s is the sat- 
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