Секция 8. Математическое моделирование проблем электродинамики

Том II, с. 341–344 УДК: 523.985 + 537.876.23

ОЦЕНКА ВЛИЯНИЯ ПЕРЕВОЗБУЖДЕНИЯ НОРМАЛЬНЫХ ВОЛН В ЗАДАЧЕ ОПРЕДЕЛЕНИЯ ЮЖНОЙ ГРАНИЦЫ ВЫСЫПАНИЯ УЛЬТРА-ЭНЕРГИЧНЫХ РЕЛЯТИВИСТСКИХ ЭЛЕКТРОНОВ

А. М. Астафьев¹, Г. Ф. Ременец²

 Институт электрофизики и электроэнергетики РАН, 191186, г. Санкт-Петербург, Дворцовая набережная, 18 E-mail: astafev-aleksandr@yandex.ru
 Санкт-Петербургский государственный университет, 199034, г. Санкт-Петербург, Университетская набережная, 7/9 E-mail: g.remenets@spbu.ru

Аннотация. Путем решения обратной СДВ задачи определены характеристики границы спорадического Ds слоя, вызванного вторжением потоков ультра-энергичных релятивистских электронов разных энергий. Особое внимание было уделено эффектам отражения и перевозбуждения нормальных волн на границе между возмущенной и невозмущенной частями радиотрассы. Моделирование в трехмодовом приближении показало, что при анализе сильных и умеренных возмущений эти эффекты могут не учитываться. Для мощных возмущений их влияние может быть более значительным.

Ключевые слова: распространение СДВ радиоволн; неоднородный волновод; перевозбуждение нормальных волн; отражение нормальных волн; ультра-энергичные релятивистские электроны; спорадический Ds слой

ESTIMATION OF MODE CONVERSION EFFECT ON THE SOUTHERN BOUNDARY DETERMINATION FOR THE ULTRA-ENERGETIC RELATIVISTIC ELECTRON PRECIPITATIONS

A. M. Astafiev, G. F. Remenets

Abstract. By solving the inverse VLF problem, characteristics of the boundary of the sporadic Ds layer caused by the precipitations of ultra-energetic relativistic electron fluxes of different power are determined. Particular attention was paid to effect of a normal wave reflection and its conversion into other normal waves on the boundary between disturbed and undisturbed parts of a radio path. By the three-mode modeling, we have shown that it can be discarded for strong and moderate disturbances. For the powerful disturbances the effect may be more significant.

Keywords: VLF radio wave propagation; inhomogeneous waveguide; normal wave conversion; normal wave reflection; ultra-energetic relativistic electrons (URE); sporadic Ds layer

Введение

Явление высыпания ультра-энергичных релятивистских электронов (УРЭ) в полярную атмосферу было обнаружено и исследовано косвенным методом путем анализа амплитуд и фаз сверхдлинноволновых (СДВ) сигналов. Суть этого явления заключается во вторжении в среднюю полярную атмосферу Земли высокоэнергичных релятивистских электронов с энергией ~100 МэВ. Вторгающиеся электроны тормозятся в окрестности 40 км над поверхностью Земли и генерируют тормозное рентгеновское излучение, которое приводит к появлению спорадического Ds слоя в области 10 – 40 км [1]. Пространственный масштаб таких возмущений соизмерим с авроральной зоной Земли, а их длительность составляет от десятка минут до нескольких часов. Факт существования описанного явления был получен только косвенным методом благодаря многолетним и непрерывным наземным измерениям амплитуд и фаз СДВ сигналов 10 – 16 кГц на полностью авроральной (Алдра – Апатиты) и частично авроральной (Великобритания – Апатиты) радиотрассах [1–4]. В настоящее время данный тип аномальных возмущений не регистрируется другими известными средствами мониторинга нижней ионосферы, а также отсутствуют спутниковые измерения электронных потоков такой большой плотности в ближнем космосе.

В результате проведенного анализа СДВ данных удалось определить эффективную электронную концентрацию средней атмосферы во время вторжения УРЭ, среднюю энергию вторгающихся электронов и указать на наличие резкой границы (эффект геомагнитной отсечки) потока УРЭ, ионизирующего атмосферу в большом диапазоне северных широт. В работах [2–4] были определены численные значения географических и геомагнитных широт для ряда событий, происходивших с 1982 по 1987 годы. Задача определения южной границы возмущений решалась с использованием представления частично авроральной радиотрассы (вдоль которой распространяется сигнал с частотой 16 кГц) в виде последовательности трех регулярных волноводных каналов «Земля – ионосфера», моделирующих различные участки радиотрассы. Однако границы раздела регулярных участков волновода являются причиной дополнительного ослабления сигнала, порождаемого эффектами отражения и перевозбуждения нормальных волн, которые в работах [2–4] из рассмотрения были исключены. Целью данной работы является оценка вклада этих эффектов в ослабление принимаемого из Великобритании сигнала и связанной с этим ошибки определения южной границы возмущений.

Содержание доклада

В рамках принятой и описанной в работе [2] модели радиотрасса Великобритания – Апатиты представляется виде последовательности трех однородных участков с двумя резкими переходами между этими участками трассы. Первый переход между среднеширотным и авроральным невозмущенным участком трассы является стационарным и не дает вклад в относительное ослабление сигнала в течение возмущения. Второй переход, соединяющий невозмущенный и возмущенный участок авроральной трассы, является нестационарным и представляет больший интерес для рассмотрения, так как может существенно влиять на характеристики принимаемого сигнала во время возмущения. Как в работах [2–4] ниже будет полагаться неподвижной положение границы возмущенного участка радиотрассы.

Для оценки ослабления сигнала, вызванного неоднородностью радиотрасрассмотрим СДВ задачу сферическом волноводе, который состоит сы, в ИЗ частей границей двух с резкой И разными комплексными диэлектрическипроницаемостями $\varepsilon_I(r)$ $\varepsilon_{II}(r),$ МИ И характеризующие невозмущенный (I)И возмущённый (II) участок трассы Великобритания – Апатиты (рис.1).

Рис. 1. Модель неоднородной радиотрассы Великобритания – Апатиты.

Комплексные диэлектрические проницаемости $\varepsilon_I(r)$ и $\varepsilon_{II}(r)$ являются функциями поперечной координаты (высоты) r и определяются через соответствующие профили эффективной электронной концентрации, которые были взяты из работы [1]. На границе двух волноводов должны

Секция 8. Математическое моделирование проблем электродинамики

выполняться условия непрерывности поперечных по отношению к этой границе компонент электрического E_r и магнитного поля H_{φ} , которые выражаются через вектор Герца, имеющему в рассматриваемом случае только одну компоненту Π_r [5]. Компоненты полей E_r и H_{φ} слева и справа от границы можно представить в виде суммы компонент полей E_r и H_{φ} отдельных нормальных волн [5,6]. Ограничимся рассмотрением только первых трех нормальных волн. Пусть слева от рассматриваемой границы падает волна номера i = 1 (ТМ0) с единичной амплитудой. Полное поле в первом (невозмущенном) волноводе (I) состоит из поля падающей волны и суммы полей обратных волн (индексы r и φ у полей можно опустить):

$$E_I = E_1 + \sum_{i=1}^3 R_i E_{-i}, H_I = H_1 + \sum_{i=1}^3 R_i H_{-i}$$
(1)

Полное поле во втором (возмущенном) волноводе состоит только из прямых волн, уходящих от границы:

$$E_{II} = \sum_{i=1}^{3} T_i E_i, H_{II} = \sum_{i=1}^{3} T_i H_i$$
(2)

где T_i и R_i – искомые комплексные амплитуды прямых и обратных волн (коэффициенты отражения и перевозбуждения).

Поля отдельных нормальных волн выражаются через собственные функции $U_i^{I,II}(r)$ поперечного оператора $L_r^{I,II}$ и являются решением уравнения $L_r^{I,II}U_i^{I,II}(r) = \lambda_i^{I,II}U_i^{I,II}(r)$ [4, 5]. Собственные значения поперечного оператора $\lambda_i^{I,II}$ известным образом связаны с параметром $\nu_i^{I,II} = \sqrt{\lambda_i^{I,II} + \frac{1}{4}}$, который определяет зависимость полей вдоль продольной координаты (угла Θ) асимптотически $\sim e^{(j\nu_i^{I,II}\Theta)}$ [5]. Собственные функции и собственные значения поперечного оператора вычислялись путем численного интегрирования нелинейного уравнения Рикатти [4] от нижней r = R до верхней границы волноводного канала r = R + z (R- радиус Земли), используя условия нормировки $U_i^{I,II}(R) = 1$. При вычислении $U_i^{I,II}(r)$ и $\nu_i^{I,II}(или \lambda_i^{I,II})$ необходимо выбирать такие значения z, больше которых результат интегрирования бы не менялся. В приведенных ниже решениях для профилей эффективной электронной концентрации [1] полагалось z = 90 км. Собственные функции поперечного оператора обладают свойством ортогональности [5], когда скалярное произведение:

$$\left\langle U_{i}^{I,II}(r) * U_{k}^{I,II}(r) \right\rangle \equiv \int_{R}^{R+z} U_{i}^{I,II}(r) U_{k}^{I,II}(r) dr = 0$$
 (3)

при условии $i \neq k$.

Используя условие непрерывности компонент полей E_r и H_{φ} на границе двух волноводных каналов и свойство ортогональности собственных функций $U_i^{I,II}(r)$, можно получить следующие уравнения для искомых комплексных амплитуд T_i и R_i :

$$T_{i}\nu_{i}^{II} \left\langle U_{i}^{II}(r) * U_{i}^{II}(r) \right\rangle = \nu_{1}^{I} \left(\left\langle U_{1}^{I}(r) * U_{i}^{II}(r) \right\rangle - R_{1} \left\langle U_{1}^{I}(r) * U_{i}^{II}(r) \right\rangle \right) -R_{2}\nu_{2}^{I} \left\langle U_{2}^{I}(r) * U_{i}^{II}(r) \right\rangle - R_{3}\nu_{3}^{I} \left\langle U_{3}^{I}(r) * U_{i}^{II}(r) \right\rangle$$
(4)

$$T_{i}\left(\nu_{i}^{II}\right)^{2}\left\langle U_{i}^{II}(r) * U_{i}^{II}(r)\right\rangle = \left(\nu_{1}^{I}\right)^{2}\left(1 - R_{1}\right)\left\langle \frac{\varepsilon_{II}(r)}{\varepsilon_{I}(r)}U_{1}^{I}(r) * U_{i}^{II}(r)\right\rangle - R_{2}\left(\nu_{2}^{I}\right)^{2}\left\langle \frac{\varepsilon_{II}(r)}{\varepsilon_{I}(r)}U_{2}^{I}(r) * U_{i}^{II}(r)\right\rangle - R_{3}\left(\nu_{3}^{I}\right)^{2}\left\langle \frac{\varepsilon_{II}(r)}{\varepsilon_{I}(r)}U_{3}^{I}(r) * U_{i}^{II}(r)\right\rangle$$

$$(5)$$

Из шести уравнений (4) и (5) вычислялись три комплексных коэффициента отражения и три комплексных коэффициента прохождения (перевозбуждения) для двух типов профилей эффективной электронной концентрации, которые соответствуют случаям сильных и мощных возмущений (характеристики этих профилей представлены в работе [1]).

Приведенный по вышеописанной методике анализ показал, что поле невозмущенного волновода почти полностью определяется полем падающей волны. Уровень отраженных от границы

возмущенной области волн не превышает 1 % от уровня падающего поля TM0 волны даже для мощных возмущений, характеризующиеся наибольшими вариациями эффективной электронной концентрации. Напротив, поле возмущенного аврорального участка радиотрассы в значительной степени определяется полем второй нормальной волны. Амплитуда второй нормальной волны для случая мощных возмущений составляет 15 % первой нормальной волны, а фазовый сдвиг первой нормальной волны составляет около 3 мкс. Для сильных возмущений эти величины получаются меньше – 7 % и 1,2 мкс соответственно. Амплитуда третьей нормальной волны примерно в десять раз меньше амплитуды второй нормальной волны для обоих случаев.

Полученные вариации поля первой нормальной волны, связанные главным образом с возбуждением второй нормальной волны в возмущенной части радиотрассы, оказываются несущественными при решении задачи определения границы возмущенной области. Эти изменения оказываются сопоставимы с ошибками измерения использованных экспериментальных данных. Следует подчеркнуть, что полученные численные результаты относятся только к моментам времени максимума сильных и мощных возмущений, тогда как при вычислении границы анализируется возмущение в течение всей его длительности [2, 3]. В моменты времени, отличных от максимума возмущений следует ожидать меньшие значения фазового сдвига и изменения амплитуды первой нормальной волны. Кроме того, в работах [2, 3] анализировались только сильные и умеренные возмущения, при которых влияние дополнительного ослабления первой нормальной волны не превышает нескольких процентов. Поле возникающей второй нормальной волны в заявленных пределах точности решения задачи определения южной границы [2–4] можно не учитывать, так как ее ослабление на участке трассы граница возмущения – точка приема (Апатиты) в 3 – 4 раза больше ослабления первой нормальной волны.

Список литературы

- 1. Beloglazov M. I., Remenets G. F. Investigation of powerful VLF disturbances // Intern. J. Geom. Aeronom., 2005. Vol. 5. No. 3. April issue. GI3004, doi:10.1029/2005GI000101.
- Remenets G.F., Astafiev A.M. Southern boundaries of ultraenergetic relativistic electron precipitations in several cases from 1982 -1986 years. J. Geophys. Res., Space Physics, 2015, 120(5), 3318 – 3327. doi:10.1002/2014JA020591.
- Remenets G. F., Astafiev A. M. Solution uniquity of an inverse VLF problem: A case-study of the polar, ground-based, VLF radio signal disturbances caused by the ultra-energetic relativistic electron precipitations and of their southern boundaries // Advances in Space Research, 2016, Vol. 58, pp. 878-889. DOI: 10.1016/j/asr.2016.05.45.
- Remenets G.F., Astafiev A.M. Generalized Schumann and variation moment methods used for the determination of the equatorward boundary of the ultra-energetic relativistic electron precipitations into the auroral middle atmosphere. Journal of Atmospheric and Solar-Terrestrial Physics 182 (2019) 186–193. https://doi.org/10.1016/j.jastp.2018.11.019
- 5. Макаров Г.И., Новиков В.В., Рыбачек С.Т. Распространение радиоволн в волноводном канале Земля ионосфера. М.: Наука, 1994. 152 с.
- 6. Фок В. А. (1970) Проблемы дифракции и распространения электромагнитных волн. Москва, «Советское радио». 520 с.