Том II, с. 25–29 УДК: 533.951 + 537.868

ИСКУССТВЕННАЯ ПЛАЗМЕННАЯ ТУРБУЛЕНТНОСТЬ В ВЕРХНЕЙ ИОНОСФЕРЕ НА ВЫСОКИХ ШИРОТАХ ПРИ ВОЗДЕЙСТВИИ МОЩНЫМИ КВ РАДИОВОЛНАМИ НЕОБЫКНОВЕННОЙ ПОЛЯРИЗАЦИИ

Н. Ф. Благовещенская¹, Т. Д. Борисова¹, А. С. Калишин¹, И. Хаггстрем², Т. Йоман³

 Арктический и антарктический научно-исследовательский институт, 199397, г. Санкт-Петербург, ул. Беринга, 38 E-mail: nataly@aari.nw.ru, borisova@aari.ru, askalishin@aari.ru
 ² Европейская научная ассоциация EISCAT, Box 812, SE-98128, г. Кируна, Швеция E-mail: ingemar.haggstrom@eiscat.se
 ³ Лейсестерский университет, г. Лейсестер, LE1 7RH, Великобритания E-mail: yxo@leicester.ac.uk

Аннотация. Представлены результаты экспериментальных исследований времени развития и пороговых мощностей возбуждения ленгмюровской и ионно-акустической турбулентностей в высокоширотной верхней ионосфере при воздействии мощными КВ радиоволнами необыкновенной поляризации (комплекс EISCAT/Heating в г. Тромсе, Норвегия). Выполнено сравнение характеристик турбулентностей, вызванных воздействием волны накачки необыкновенной и обыкновенной поляризаций.

Ключевые слова: мощная КВ радиоволна; необыкновенная поляризация; высокоширотная ионосфера; параметрическая распадная неустойчивость; турбулентность; плазменная волна; EISCAT

ARTIFICIAL PLASMA TURBULENCE IN THE HIGH LATITUDE UPPER IONOSPHERE INDUCED BY EXTRAODINARY POLARIZED POWERFUL HF RADIO WAVES

M. A. Blagoveshchenskaya, T. D. Borisova, A. S. Kalishin, I. Häggström, T. Yeoman

Abstract. Experimental results concerning the evolution in time and thresholds of excitation of the Langmuir and ion-acoustic turbulences in the high latitude upper ionosphere induced by the extraordinary polarized HF pump waves from the EISCAT/Heating facility at Tromsø, Norway, are presented. The comparison between the turbulence features under the action of HF pump waves with the extraordinary and ordinary polarization is made.

Keywords: powerful HF radio wave; extraordinary polarization; high latitude ionosphere; parametric decay instability; turbulence; plasma wave; EISCAT

Введение

Для модификации верхней ионосферы (F-область) традиционно на всех нагревных комплексах мира используются мощные КВ радиоволны обыкновенной поляризации на частотах нагрева f_H , ниже критической частоты слоя F2 ($f_H < f_oF2$). При включении КВ нагревного комплекса мощная электромагнитная (EM) волна обыкновенной поляризации (O-мода) вблизи высоты отражения трансформируется в высокочастотную ленгмюровскую (L) и низкочастотную ионно-акустическую (IA) плазменные волны, $EM \rightarrow L+IA$. Этот процесс происходит в первые ~ 100 мс нагрева и называется параметрической распадной неустойчивостью (parametric decay instability, PDI) [1]. Радар некогерентного рассеяния радиоволн (HP), пространственно совмещенный с КВ нагревным комплексом, позволяет непосредственно идентифицировать возбуждение ленгмюровских и ионно-акустических плазменных волн по появлению плазменных линий на частоте нагрева (HF-induced plasma lines, HFPL) и усиленных нагревом ионных линий (HFenhanced ion lines, HEIL) в спектрах сигналов HP на первом 5 с шаге измерений [1].

Мощная КВ радиоволна необыкновенной поляризации (X-мода) отражается на высоте, где локальная частота плазмы $f_X^2 = f_H (f_H - f_{ce})$, что ниже как высоты отражения КВ радиоволны O-поляризации ($f_O^2 = f_H^2$), так и высоты верхнего гибридного резонанса ($f_{UH}^2 = f_H^2 - f_{ce}^2$). Вследствие этого возбуждение мелкомасштабных искусственных ионосферных неоднородностей (МИИН) не возможно. Для возбуждения PDI необходимо, чтобы волновой вектор и электрическое поле волны накачки в области отражения были ориентированы параллельно локальному магнитному полю. Это реализуется только для O-волны, в то время как электрическое поле в области отражения волны накачки необыкновенной поляризации (X-мода) ориентировано перпендикулярно магнитному полю.

Тем не менее результаты многочисленных экспериментов, выполненных специалистами АА-НИИ на КВ нагревном комплексе EISCAT/Heating в 2009 – 2016 гг., убедительно продемонстрировали, что мощная КВ радиоволна необыкновенной поляризации, инжектируемая в высокоширотную F-область ионосферы в магнитный зенит вызывает генерацию разнообразных искусственных ионосферных возмущений, которые могут превосходить по интенсивности возмущения при O-нагреве [2–4]. В данной работе представлены результаты экспериментальных исследований характеристик и поведения ленгмюровской и ионно-акустической турбулентностей в высокоширотной F-области ионосферы при воздействии мощными КВ радиоволнами необыкновенной поляризации (комплекс EISCAT/Heating в г. Тромсе, Норвегия), а также выполнено сравнение характеристик турбулентностей при O- и X-нагреве.

Характеристика экспериментов

Для модификации высокоширотной F-области ионосферы мощными КВ радиоволнами использовался КВ нагревной комплекс EISCAT/Heating (69.6° N, 19.2° E, $L = 6.2^{\circ}$, $I = 78^{\circ}$), расположенный в г. Тромсе, северная Норвегия [5]. Эксперименты проводились в 2011 – 2016 гг. в дневные и вечерние часы с использованием фазированной антенной решетки с шириной диаграммы направленности порядка $5 - 6^{\circ}$ на уровне половинной мощности. Мощная КВ радиоволна излучалась на частотах $f_H = 5.5 - 8.0 \,\mathrm{MFu}$ в магнитный зенит (диаграмма направленности антенны комплекса EISCAT/Heating была наклонена на 12° от вертикали к югу). Эффективная мощность излучения составляла $P_{3\phi\phi} = 460 - 750 \,\mathrm{MBt}$.

В качестве основных диагностических средств эффектов воздействия использовался EISCAT радар некогерентного рассеяния радиоволн (HP) на частоте 930 МГц, расположенный в непосредственной близости от нагревного комплекса, и когерентный KB радар CUTLASS (SuperDARN) [6] в Финляндии (63° N, 27° E), находящийся примерно на 1000 км южнее KB нагревного комплекса в Тромсе. Измерения с помощью радара HP выполнялись в диапазоне высот от 90 до 700 км с разрешением по времени 5 с и разрешением по высоте 1.5 или 3 км. Измерения выполнялись в направлении магнитного поля в Тромсе (магнитный зенит). CUTLASS излучал на узконаправленную антенну с шириной луча примерно 3.3° , ориентированную на искусственно возмущенную область ионосферы над Тромсе.

Результаты наблюдений и их анализ

Как показали результаты многочисленных экспериментов ААНИИ, выполненных на КВ нагревном комплексе EISCAT/Heating в широком диапазоне частот нагрева от 5.423 до 7.953 МГц, возбуждение PDI происходило не только при O-нагреве, но и при воздействии на высокоширотную ионосферу мощной КВ радиоволны X-поляризации. Рассмотрим эволюцию во времени после включения комплекса EISCAT/Heating усиленных нагревом плазменных и ионноакустических линий в спектрах радара HP, полученных с 5 с разрешением по времени и 3 км разрешением по высоте. Отметим, что EISCAT радар HP на частоте 930 МГц измеряет только сдвинутую вниз по частоте HFPL (downshifted plasma line). В качестве примера на рис. 1 приведено поведение интенсивностей плазменных линий (HFPL), а также сдвинутых вверх (upshifted) и вниз (downshifted) по частоте ионных линий (HFIL_{UP} и HFIL_{DOWN}) на трех фиксированных высотах 21 февраля 2013 г., начиная за 30 с до включения нагревного комплекса и в течение первых двух минут O- и X-нагрева на частоте 7.1 МГц. В период эксперимента волна накачки

излучалась в магнитный зенит циклами 10 мин нагрев, 5 мин пауза с первой минуты каждого часа. Эффективная мощность излучения составляла 530 MBт.

Из рис. 1 ясно видно, что начало O-нагрева ($T_0 = 13:01 \text{ UT}$) сопровождается резким возрастанием интенсивностей HFPL, HFIL_{UP} и HFIL_{DOWN} которые достигают максимума на первом 5 с шаге измерений радара HP, а затем постепенно ослабевают. Это объясняется тем, что при обычно используемых мощностях $P_{3\phi\phi} = 100 - 250 \text{ MBT}$ полностью развившиеся МИИН блокируют дальнейшее развитие PDI. Однако при высоких значениях $P_{3\phi\phi} (P_{3\phi\phi} > 350 - 400 \text{ MBT})$ возможно возобновление возбуждения плазменных и ионных линий [7]. Такая ситуация наблюдалась при O-нагреве, когда HFIL_{UP} и HFIL_{DOWN} появились на высоте 202 км (см. рис. 1). При X-нагреве развитие HFPL принципиально отличалось от O-нагрева. Из рис. 1 видно, что эффекты включений ($T_0 = 13:16 \text{ UT}$) в поведении усиленных нагревом плазменных и ионных линий не наблюдались. HFPL, HFIL_{UP} и HFIL_{DOWN} появлялись только через 15 – 20 с после включения нагревного комплекса. Следует отметить, что при X-нагреве возбуждения нагрева сотровождалось генерацией МИИН. Более того, в отличие от O-нагрева, PDI начинала возбуждаться только тогда, когда МИИН уже сформировались.

Рис. 1. Поведение HFPL, HFIL_{UP} и HFIL_{DOWN} 21 февраля 2013 г. при O- (верхняя панель) и X-(нижняя панель) нагреве на частоте 7.1 МГц за 30 с до включения нагревного комплекса и в течение первых двух минут нагрева.

Далее рассмотрим влияние эффективной мощности излучения на поведение усиленных нагревом плазменных и ионных линий в период эксперимента 20 октября 2012 г.

В период эксперимента мощная КВ радиоволна излучалась в магнитный зенит на частоте 7.953 МГц циклами 10 мин нагрев, 5 мин пауза, начиная с первой минуты часа при альтернативном изменении поляризации от цикла к циклу. В течение каждого O- и X- цикла нагрева происходило ступенчатое изменение $P_{3\phi\phi}$ в последовательности 10, 30, 50, 70, 100, 100, 70, 50, 30, 10% от максимальной эффективной мощности излучения, которая составляла 560 МВт. При X-нагреве усиленные плазменные и ионные линии появляются при 30% мощности, что составляет 168 МВт (см. рис. 2). Возбуждение непрерывных плазменных и ионных линий при O-нагреве происходило при значительно более высоких эффективных мощностях излучения (70% от $P_{3\phi\phi}$ таками.

Рис. 2. Поведение интенсивностей плазменных и ионных линий (обозначенных как "raw electron density") с 5 с временем интегрирования 20 октября 2012 г. с 14 до 15 UT при *О*– и *Х*–нагреве на частоте 7.953 МГц при ступенчатом изменении эффективной мощности излучения в каждом 10-мин цикле нагрева.

Заключение

Установлено, что при X-нагреве высокоширотной F-области ионосферы появление усиленных нагревом плазменных и ионных линий имеет временную задержку 15 - 20 с относительно начала нагрева. Затем их интенсивность постепенно возрастала, достигая максимальных значений через 50 - 70 с после включения нагревного комплекса. Следует отметить, что при X-нагреве возбуждение параметрической распадной неустойчивости (PDI) происходило в течение всего цикла нагрева и сопровождалось генерацией МИИН.

Обнаружено принципиальное различие в развитии ленгмюровской и ионно-акустической турбулентностей при *O*– и *X*–нагреве высокоширотной *F*–области ионосферы. При *O*–нагреве включение нагревного комплекса сопровождалось кратковременными всплесками интенсивностей усиленных нагревом ионных и плазменных линий, свидетельствующих о возбуждении «классической» PDI. Показано, что в рассматриваемых экспериментах, выполненных при высо-

ких эффективных мощностях излучения, при О-нагреве возможно возобновление возбуждения плазменных и ионных линий.

Определены пороги возбуждения ленгмюровской и ионно-акустической турбулентностей при X-нагреве высокоширотной F-области ионосферы, которые составляют 168 MBт (для эксперимента на частоте нагрева 7.953 МГц). В тех же самых фоновых геофизических условиях возобновление генерации плазменных и ионных линий при O-нагреве требует существенно более высоких значений $P_{эф\phi} = 392$ MBт.

Благодарности

Авторы выражают благодарность Европейской научной Ассоциации EISCAT. Система радаров CUTLASS в Финляндии и Исландии поддерживается Финским метеорологическим институтом и Шведским институтом космической физики. Т.К. Yeoman поддержан грантом NERC NE/K011766/1.

Список литературы

- Stubbe P. Review of ionospheric modification experiments at Tromsø // J. Atmos. Terr. Phys. 1996.
 Vol. 58. P. 349–368.
- 2. Blagoveshchenskaya N.F., Borisova T.D., Yeoman T. et al. Artificial field-aligned irregularities in the high-latitude F region of the ionosphere induced by an X-mode HF heater wave // Geophys. Res. Lett. 2011. Vol. 38. doi: 10.1029/2011GL046724.
- 3. Blagoveshchenskaya N. F., Borisova T. D., Kosch M. et al. Optical and Ionospheric Phenomena at EISCAT under Continuous X-mode HF Pumping // J. Geophys. Res.: Space Phys. 2014. Vol. 119. P. 10483–10498.
- Blagoveshchenskaya N. F., Borisova T. D., Yeoman T. K. et al. Modification of the high latitude ionosphere F region by X-mode powerful HF radio waves: Experimental results from multiinstrument diagnostics // J. Atmos. Sol.-Terr. Phys. – 2015. – Vol. 135. – P. 50–63.
- Rietveld M. T., Senior A., Markkanen J., Westman A. New capabilities of the upgraded EISCAT highpower HF facility // Radio Sci. – 2016. – Vol. 51. – P. 1533–1546.
- 6. Lester M., Chapman P.J., Cowley S. W. H et al. Stereo CUTLASS: A new capability for the SuperDARN radars // Ann. Geophys. 2004. Vol. 22. P. 459–473.
- Dhillon R. S., Robinson T. R. Observations of time dependence and aspect sensitivity of regions of enhanced UHF backscatter associated with RF heating // Ann. Geophys. - 2005. - Vol. 23. -P. 75-85.