УДК 517.955

КОРРЕКТНО РАЗРЕШИМЫЕ ЗАДАЧИ ДЛЯ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ **УРАВНЕНИЙ В ЧАСТНЫХ ПРОИЗВОЛНЫХ**

B.C. Мокейчев 1 , А.М. Сидоров 2

Используя теорию φ_B -распределений, мы рассматриваем задачу Коши для линейного дифференциального уравнения в частных производных.

Ключевые слова: линейное дифференциальное уравнение в частных производных, задача Коши, φ_{R} – распределение.

Рассмотрим дифференциальное уравнение

$$P(t, u, D)u = D_t^N u + \sum_{i=1}^{M} \sum_{\alpha \in \Phi} C_{\alpha, j}(t) D_t^j D_x^{\alpha} u = f(t, x),$$
 (1)

где $t \in \mathbb{R}, x \in \mathbb{R}^n, D_y$ – символ дифференцирования по y, Φ – конечное множество мультииндексов, $C_{\alpha,j}(t)$ – квадратная матрица, не зависящая от x и u, f(t,x) – известная функция, не зависящая от u.

Если (1) описывает математическую модель динамического процесса, то решение должно удовлетворять начальным и краевым условиям. При этом получаемая задача должна быть корректно поставленной по Адамару [1].

Пусть

$$f(t,x) = \sum_{|k|=0}^{\infty} f_k(t) \exp\left(\frac{ikx}{T}\right),\tag{2}$$

где $k = (k_1, \dots, k_n)$ – вектор с целочисленными координатами, $f_k(t)$ – известная функция, не зависящая от x и принадлежащая некоторому банаховому пространству B, $\frac{ikx}{T} = \frac{ik_1x_1}{T_1} + \dots + \frac{ik_nx_n}{T_n}$, $T_j > 0$, $x = (x_1, \dots, x_n) \in \mathbb{R}^n$, i – мнимая единица. В [2], [3] было введено понятие φ_B -распределений, т. е. φ -распределений со значениями в заданном банаховом пространстве В. Эти распределения оказались весьма удобными в том числе и при решении задач для линейных дифференциальных уравнений в частных производных.

Было показано, что пространство φ_B -распределений является наиболее широким пространством, в котором справедливо равенство (2). Решение u уравнения (1) ищется в пространстве φ_B -распределений, т. е.

$$u = \sum_{|k|=0}^{\infty} u_k(t) \exp\left(\frac{ikx}{T}\right). \tag{3}$$

Если $u_k(t)\in C^N_{loc}(\mathbf{R})$, то $u_t^{(m)}=\sum_{|k|=0}^\infty u_k^{(m)}(t)\exp\left(\frac{ikx}{T}\right)$, $m=0,\ldots,N$. Решение u должно удовлетворять условиям Коши

$$u_t^{(m)}(0,x) = g_m(x), \quad m = 0,..., N-1,$$
 (4)

¹ valery.mokeychev@kpfu.ru; Казанский (Приволжский) федеральный университет

² anatoly.sidorov@kpfu.ru; Казанский (Приволжский) федеральный университет

в которых $g_m(x)$ – известные $\varphi_{\mathbb{C}^n}$ -распределения, т. е.

$$g_m(x) = \sum_{|k|=0}^{\infty} g_{m,k} \exp\left(\frac{ikx}{T}\right), \quad g_{m,k} \in \mathbb{C}^n.$$

Определение. φ_B – распределение u (3) называется решением задачи (1), (4), если

$$\sum_{|k|=0}^{\infty} P(t, x, D) \left(u_k(t) \exp\left(\frac{ikx}{T}\right) \right) = f(t, x)$$

и выполнены условия (4).

Теорема. Если $C_{\alpha,j}(t) \in L^1_{loc}(R)$, то задача (1), (4) корректно разрешима по Адамару в пространстве φ_B -распределений.

Литература

- 1. Hadamard J. *Le problème de Cauchy et les équattions aux dérivées partielles linéares hyperbaliques.* Paris: Hermann, 1932. 542 p.
- 2. Mokeichev V. S., Sidorov A. M. *On an expansiion in the series by given system of elements //* Исследования по прикладной математике и информатике. Казань: Казанский госуниверситет. 2004. Вып. 25. С. 163–167.
- 3. Мокейчев В. С. *О разложении в ряды по заданной системе элементов //* Исследования по прикладной математике и информатике. Казань: Изд-во Казанского федерального университета. 2011. Вып. 27. С. 144–152.

CORRECTLY SOLVABLE PROBLEMS IN LINEAR PARTIAL DIFFERENTIAL EQUATIONS

V.S. Mokeychev, A.M. Sidorov

By use of the theory of φ_B – distributions we consider Cauchy's problem for linear partial differential equations.

Keywords: linear partial differential equation, Cauchy's problem, φ_B -distribution.

УДК 514.822

НЕРАВЕНСТВА, ВКЛЮЧАЮЩИЕ ВКЛЮЧАЮЩИЕ ДРОБНЫЕ ИНТЕГРАЛЫ ФУНКЦИИ И ЕЕ ПРОИЗВОДНУЮ

Р.Г. Насибуллин¹

1 nasibullinramil@gmail.com; Казанский (Приволжский) федеральный университет

Доказаны новые неравенства, включающие дробные интегралы функции и ее производную. Предварительно мы получаем нижние оценки весовых норм производной через выражения, зависящие от дробных интегралов Римана-Лиувилля.

Ключевые слова: неравенство Харди, дробный интеграл Римана-Лиувилля, функция Бесселя.