

Mineralogical composition of the Lower and Upper Kazanian (Mid-Permian) rocks and facies distribution at the Petchischi region (Eastern Russian Platform)

Zorina S.

Kazan Federal University, 420008, Kremlevskaya 18, Kazan, Russia

Abstract

© 2015, Springer-Verlag Berlin Heidelberg. Abstract: The mineral composition proportions of carbonate rocks of Kazanian (Mid-Permian) age in the Petchischi region (eastern part of the Russian Platform) was identified by X-ray powder diffraction, ICP-MS and optical microscopy. The Lower Kazanian deposits are presented predominantly by bio-dolomites with changing terrigenous component and the lack of gypsum-bearing layers in the succession. Dolomites are prevalent in the Upper Kazanian succession, which is composed of alternation of gypsum-bearing dolomites, clayey dolomites and pure dolomites. The discovered bentonite-bearing component in marls and bentonite clays are proposed as evidence of volcanic activity in the Urals in the Kazanian stage. Two marine facies on the Eastern Russian Platform in the Kazanian: peritidal shallow flat and coastal sabkha agree well with the trends of $\delta^{18}\text{O}$ and $\delta^{13}\text{C}$ ratios.

<http://dx.doi.org/10.1007/s13146-015-0272-3>

Keywords

Depositional model, Dolomite, Kazanian, Middle Permian, Russian Platform, Sabkha

References

- [1] Atabey E (1995) Petrography and origin of dolomites of Yaniktepe Formation (Upper Cretaceous) in Gürün Autochthonous, Eastern Turkey. Miner Res Explor Bull 117:59-67
- [2] Badiozamani K (1973) The Dorag dolomitization model—application to the Middle Ordovician of Wisconsin. J Sediment Petrol 43(4):965-984
- [3] Balabanov YuP, Burov BV (1998) Paleomagnetic characteristics. In: Burov BV, Gubareva VS (eds) Upper Permian stratotypes and reference sections of the Kazan Region. GEOS, Moscow, pp 43-44 (in Russian)
- [4] Burov BV (ed) (2005) Geology of the Republic of Tatarstan. Stratigraphy and tectonics. GEOS, Moscow (in Russian)
- [5] Burov BV, Boronin VP (1977) The Paleomagnetic Zone Illavara in the Upper Permian and Lower Triassic deposits of the Mid Volga Region. In: Proceedings on stratigraphy of the Upper Permian of the USSR. Kazan University Press, Kazan, pp 25-52 (in Russian)
- [6] Burov BV, Esaulova NK (2003) Permian System. Upper Series. In: Burov BV (ed) The geology of Tatarstan. Stratigraphy and tectonics. GEOS, Moscow, pp 150-174 (in Russian)
- [7] Burov BV, Zharkov IYa, Nurgaliev DK (1996) Magnetostratigraphic characteristics of the Upper Permian sections of the Volga and Kama Regions. In: Burov BV (ed) Upper Permian stratotypes and reference sections of Volga and Kama Regions. Ecocenter, Kazan, pp 390-423 (in Russian)
- [8] Crowley TJ, Baum SK (1992) Modeling late Paleozoic glaciation. Geology 20:507-510

[9] Dunham RJ (1962) Classification of carbonate rocks according to depositional texture. In: Ham WE (ed) Classification of carbonate rocks. American Association of Petroleum Geologists Memoir 1, pp 108-121

[10] Esaulova NK (1986) The Kazanian flora of the Kama Region. Kazan University Press, Kazan (in Russian)

[11] Esaulova NK (2001) The Upper Permian stratotypes and their correlation. Georesources 2(5):17-21

[12] Folk RL (1962) Spectral subdivision of limestone types. In: Ham WE (ed) Classification of carbonate rocks. American Association of Petroleum Geologists Memoir I, pp 62-84

[13] Forsh NN (1951) The Kazanian stratigraphy and facies of the Mid Volga region. The Geology of the Volga Region, Leningrad, Moscow, pp 34-80 (in Russian)

[14] Golovkinsky NA (1868) The Permian Formation in the central Kama-Volga basin. In: Proceedings on the Geology of Russia, St. Petersburg (in Russian)

[15] Golubev VK (2001) Event stratigraphy and correlation of Kazanian marine deposits in the stratotype area. Stratigr Geol Correl 9(5):454-472

[16] Grim RE, Güven N (1978) Bentonites. Elsevier, New York

[17] Gubareva VS, Boltayeva VP (1999) Kazanian Brachiopods of stratotype sections. In: Proceedings of the international symposium "Upper Kazanian stratotypes of the Volga region. GEOS, Moscow, pp 146-150 (in Russian)

[18] Gusev AK (1963) Correlation of the Permian sections of the Tatarian, Marian, and Chuvashian ASSR, Kirov, and Gorky regions with the sections of the Mid Pechora. Uchenye Zap Kazan Univ 123(11):3-26 (in Russian)

[19] Gusev AK (1977) The stratigraphic significance of the Upper Permian nonmarine bivalves of the Eastern part of the USSR. In: Proceedings on the Upper Permian stratigraphy in the USSR. Kazan University Press, Kazan, pp 94-128 (in Russian)

[20] Gusev AK (1990) Upper Permian Nonmarine bivalves of the Eastern part of the USSR. Kazan University Press, Kazan (in Russian)

[21] Gusev AK, Burov BV, Esaulova NK (1993) Biostratigraphic characteristics of the Upper Permian deposits of Volga and Kama Regions. Bull RMSK Centru Yugu Russkoi Platt 2:75-80 (in Russian)

[22] Haghghi AS, Sahraeyan M (2014) Facies analysis and diagenetic features of the Aptian Dariyan Formation in Zagros Fold-Thrust Belt, SW Iran. J Afr Sci 100:598-613. doi:10.1016/j.jafrearsci.2014.08.009

[23] Hanshaw BB, Back W, Dieke RG (1971) A geochemical hypothesis for dolomitization by groundwater. Econ Geol 66:710-724

[24] Hardie LA (1986) Perspective dolomitization: a critical view of some current views. Sed Geol 57:166-183

[25] Ignatiev VI (1976) Formation of the Volga-Ural Antecline in the Permian period. Kazan University Press, Kazan (in Russian)

[26] Ignatiev VI (1978) The evolution of ideas about the Kazanian geology of the Russian platform. Kazan University Press, Kazan (in Russian)

[27] Ignatiev VI, Urasina EA, Kazansky MG (1970) Facies and copper-bearing of the Kazanian deposits of the Eastern Tataria. In: Proceedings on the geology of the Eastern Russian Platform. Kazan University Press, Kazan, pp 112-157 (in Russian)

[28] Isbell JL, Miller MF, Wolfe KL, Lenaker PA (2003) Timing of late Paleozoic glaciation in Gondwana: Was glaciation responsible for the development of Northern Hemisphere cycloths? In: Chan MA, Archer AA (eds) Extreme depositional environments: mega end-members in geologic time. Special paper 370, Geological Society of America, pp 5-24

[29] Khalymbadzha VG, Silantiev VV (1999) Conodonts from the Kazanian stage of Tatarstan. Bull MOIP Otdel Geol 74(2):60-61 (in Russian)

[30] Khasanov RR (1998) Geochemical characteristics. In: Burov BV, Gubareva VS (eds) Upper Permian stratotypes and reference sections of the Kazan region. GEOS, Moscow, pp 44-51 (in Russian)

[31] Kotlyar GV, Golubev VK, Silantiev VV (2013) General stratigraphic scale of the Permian system: current state of affairs. In: Fedonkin MA (ed) General stratigraphic scale of Russia: state and prospects of resettlement. Proceedings of the all-Russia conference, GIN RAS, Moscow, pp 187-195 (in Russian)

[32] Kotlyar GV, Golubev VK, Silantiev VV (2014) General stratigraphic scale of the Permian marine-continental and continental formations of the East European Platform. In: Nourgaliev DK (ed) Proceeding of Kazan Golovkinsky stratigraphic meeting Carboniferous and Permian Earth systems, stratigraphic events, biotic evolution, sedimentary basins and resources (20-23 October 2014). Kazan University Press, Kazan, pp 49-51

[33] Kuleshov VN, Sedaeva KM (2009) Geochemistry of isotopes (δ C, δ O) and depositional environment of the Upper Kazanian carbonate sediments in the Volga-Vyatka interfluve. Lithol Miner Resour 44(5):465-481. doi:10.1134/S0024490209050058

[34] Kump LR, Arthur MA (1999) Interpreting carbon-isotope excursions: carbonates and organic matter. Chem Geol 161:181-198

[35] Land LS (1985) The origin of massive dolomite. J Geol Educ 33:112-125

- [36] Larochkina IA, Silantiev VV (eds) (2007) Geosites of the Republic of Tatarstan. Akvarel-Art, Kazan (in Russian)
- [37] Leonova TB (2007) Correlation of the Kazanian of the Volga-Urals with the Roadian of the global Permian scale. *Palaeoworld* 16:246–253. doi:10.1016/j.palwor.2007.05.002
- [38] Mei S, Henderson CM (2001) Evolution of Permian conodont provincialism and its significance in global correlation and paleoclimate implication. *Palaeogeogr Palaeoclimatol Palaeoecol* 170:237–260
- [39] Muraviev FA (2007) Geochemical methods of stratigraphical subdivision of carbonate sections (case study from the West of Tatarstan). In: Silantiev VV, Sungatullina GM (eds) The Upper Paleozoic of Russia: stratigraphy and paleogeography (proceedings of the all-Russia conference). Kazan University Press, Kazan, pp 224–227 (in Russian)
- [40] Murchison RI, Verneuil E (1842) A second geological survey of Russia in Europe. *Proc Geol Soc Lond* 3:717–730
- [41] Murchison RI, Verneuil E (1845) On the Permian system as developed in Russia and other parts of Europe. *Q J Geol Soc Lond* 1:81–87
- [42] Nechaev AV (1894) Fauna from the Permian deposits of the Eastern part of European Russia. In: Proceedings of the Earth-Science Society of Kazan University, vol 27 (4) (in Russian)
- [43] Noinsky ME (1899) The Permian section revealed on the right bank of the Volga River in front of Kazan. In: Proceedings of the Earth-Science Society of Kazan University, vol 13(6) (in Russian)
- [44] Noinsky ME (1924) Some data on the composition and facies pattern of the Kazanian stage in the Kazan region. *Izv Geol Kom* 43(6):565–622
- [45] Nourgaliev DK, Nourgalieva NG (1999) Astronomical calibration of the East-Russian Plate Upper Permian sediments cycles: preliminary data about Kazanian stage duration. *Permophiles* 34:15–19
- [46] Nurgaliev DK, Silantiev VV, Nikolaeva SV (eds) (2015) Type and reference sections of the Middle and Upper Permian of the Volga and Kama River regions. In: A field guidebook of XVIII international congress on Carboniferous and Permian, Kazan, 16–20 August 2015. Kazan University Press, Kazan
- [47] Nurgalieva NG (2009) On climate origin of Noinsky's cycles. *Georesources* 3:27–29 (in Russian)
- [48] Nurgalieva NG, Ponomarchuk VA, Nurgaliev DK (2007a) Strontium isotope stratigraphy: possible applications for age estimation and global correlation of Late Permian carbonates of the Pechischi type section (Volga River). *Russ J Earth Sci* 9:1002. doi:10.2205/2007ES000221
- [49] Nurgalieva NG, Vinokurov VM, Nurgaliev DK (2007b) The Golovkinsky strata formation model. Basic facies law and sequence stratigraphy concept: historical sources and relations. *Russ J Earth Sci* 9:1003. doi:10.2205/2007ES000222
- [50] Nurgalieva NG, Silantiev VV, Vetoshkina OS, Ponomarchuk VA, Nurgaliev DK, Urazaeva MN (2015) Some new data on isotope stratigraphy of the Permian rocks at the east of the Russian platform. *J Eng Appl Sci* 10(10):4436–4442
- [51] Patterson RJ, Kinsman DJJ (1982) Formation of diagenetic dolomite in coastal sabha along Arabian (Persian) Gulf. *Am Assoc Pet Geol Bull* 66:28–43
- [52] Schlager W (2005) Carbonate sedimentology and sequence stratigraphy. SEPM, Tulsa
- [53] Scotese CR (2014) Atlas of Middle & Late Permian and Triassic Paleogeographic maps, maps 43–48 from volume 3 of the PALEOMAP Atlas for ArcGIS (Jurassic and Triassic) and maps 49–52 from volume 4 of the PALEOMAP PaleoAtlas for ArcGIS (Late Paleozoic), Mollweide Projection, PALEOMAP Project, Evanston
- [54] Semakin YuG, Grishina SN, Vinogradov OR (1999) The state geological map of the Russian Federation at a scale of 1: 200,000. Sheets N-38-XII, N-39-VII, Mid-Volgian series. Minprirody RF, Moscow (in Russian)
- [55] Sementovsky YuV (1973) Late Permian depositional environment of mineral deposits in the Eastern Russian Platform. Kazan University Press, Kazan (in Russian)
- [56] Shen SZ, Schneider JW, Angiolini L, Henderson CM (2013) The international Permian timescale: March 2013 update. In: Lucas SG, DiMichele W, Barrick JE, Schneider JW, Spielmann JA (eds) The Carboniferous–Permian transition. New Mexico Museum of Natural History and Science, vol 60, pp 411–416
- [57] Shtukenberg AA (1882) Geological investigations of the variegated marls on the right bank of the Volga River between Tetjushi and Simbirsk. In: Annex to the minutes of the Kazan Earth-Science Society meeting, vol 59. Kazan University Press, Kazan (in Russian)
- [58] Silantiev VV (1998) Nonmarine bivalves of the genus *Palaeomutela* from the Upper Permian of the European Russia (new diagnosis of the genus). In: Burov BV (ed) Upper Permian stratotypes and reference sections of Volga and Kama regions. Ecocenter, Kazan, pp 35–46 (in Russian)
- [59] Silantiev VV (2014) Permian nonmarine bivalve zonation of the East European platform. *Stratigr Geol Correl* 22(1):1–27. doi:10.1134/S0869593814010067

[60] Silantiev VV, Arefiev MP, Balabanov YuP, Golubev VK, Götz AE, Davydov VI, Kabanov PB, Kotlyar GV, Mouraviev FA, Nurgalieva NG, Nurgaliev DK, Urazaeva MN (2014a) Multidisciplinary stratigraphic research of the Middle and Upper Permian of East European platform (preliminary results of 2013-2014). In: Nourgaliev DK (ed) Proceeding of Kazan Golovkinsky stratigraphic meeting Carboniferous and Permian Earth systems, stratigraphic events, biotic evolution, sedimentary basins and resources (20-23 October 2014). Kazan University Press, Kazan, pp 83-84

[61] Silantiev VV, Golubev VK, Götz AE (2014b) Depositional model of the East European platform during Kazanian (Roadian) times. In: Nourgaliev DK (ed) Proceeding of Kazan Golovkinsky stratigraphic meeting Carboniferous and Permian Earth systems, stratigraphic events, biotic evolution, sedimentary basins and resources (20-23 October 2014). Kazan University Press, Kazan, pp 80-82

[62] Solodukho MG (1987) The Kazanian stage of the Central part of the City of Kazan. In: Proceedings on the Geology of the Eastern Russian Platform. Kazan University Press, Kazan, pp 40-47 (in Russian)

[63] Solovyev BA (1992) Stages of evolution and petroleum productivity of the sedimentary cover of the North Caspian basin. *Geol Nefti Gaza* 8:13-18 (in Russian)

[64] Sungatullin RKh, Kuleshov VN, Kadyrov RI (2014) Isotope (δC and δO) compositions of dolomites from the Permian evaporitic sequences of the Eastern Russian Plate: evidence from the Syukeevo gypsum deposit. *Lithol Miner Resour* 49(5):406-415. doi:10.1134/S0024490214050071

[65] Tierney KE (2010) Carbon and strontium isotope stratigraphy of the Permian from Nevada and China: implications from an icehouse to greenhouse transition. Dissertation for the degree of PhD in the Graduate School of the Ohio State University. https://etd.ohiolink.edu/!etd.send_file?accession=osu1269625662&disposition=inline

[66] Tikhvinskaya EI (1967) The Kazanian Stage. The Geology of the USSR XI. Volga and Kama Regions I. Nedra, Moscow, pp 369-394 (in Russian)

[67] Ulmishek GF (2001) Petroleum geology and resources of the North Caspian Basin, Kazakhstan and Russia. US Geol Surv Bull 2201-B:25. <http://geology.cr.usgs.gov/pub/bulletins/b2201-b/>

[68] Veizer J, Ala D, Azmy K, Bruckschen P, Buhl D, Bruhn F, Carden GAF, Diener A, Ebneth S, Godderis Y, Jasper T, Korte C, Pawellek F, Podlaha O, Strauss H (1999) Sr/Sr, δC and δO evolution of Phanerozoic seawater. *Chem Geol* 161:59-88. doi:10.1016/S0009-2541(99)00081-9

[69] Vinogradov AP, Vereshchagin VN, Ronov AB, Nalivkin VD, Pozner VM (eds) (1969) Atlas of lithologic-paleogeographic maps of the Soviet Union, vol 2. Devonian, Carboniferous, and Permian. Mingeo SSSR, Moscow (in Russian)

[70] Warren JK (2006) Evaporites: sediments, resources and hydrocarbons. Springer, Berlin

[71] Warren JK (2010) Evaporites through time: tectonic, climatic and eustatic controls in marine and nonmarine deposits. *Earth Sci Rev* 98:217-268. doi:10.1016/j.earscirev.2009.11.004

[72] Wilson JL (1975) Carbonate facies in geologic history. Springer, New York

[73] Zamannejad A, Jahani D, Lotfpour M, Movahed B (2013) Mixed evaporite/carbonate characteristics of the Triassic Kangan Formation, offshore area, Persian Gulf. *Rev Mexicana Ciencias Geol* 30(3):540-551

[74] Zorina SO (2014) Golovkinsky's law and tectonic-eustatic modeling. In: Nourgaliev DK (ed) Proceeding of Kazan Golovkinsky stratigraphic meeting Carboniferous and Permian Earth systems, stratigraphic events, biotic evolution, sedimentary basins and resources (20-23 October 2014). Kazan University Press, Kazan, pp 100-101

[75] Zorina SO, Ruselik ES, Ilicheva OM, Netkasova NA, Silantiev VV (2011) Mineral composition and depositional environments of Lower and Upper Kazanian boundary beds of stratotype section of Prikazansky region. *Izv Vysshikh Uchebnykh Zaved Geol Razved* 1:11-17 (in Russian)