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Abstract

An optimal control problem with distributed control in the right-hand side of

Poisson equation is considered. Pointwise constraints on the gradient of state and

control are imposed in this problem. The convergence of �nite element approxima-

tion for this problem is proved. Discrete saddle point problem is constructed and

preconditioned Uzawa-type iterative algorithm for its solution is investigated.

Key words: optimal control, �nite element method, iterative method, constrained saddle
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Introduction

Many physical processes modeled by partial di�erential equations require constraints

on their solutions which a play role of state in the corresponding optimization problems.

Pointwise constraints on the gradient of the state are important, in particular, in cooling

and heating processes in order to avoid damage of the products caused by large material

stresses (cf., e.g. [1] � [3] and bibliography therein for cooling in continuous casting

process).

The state constraints in general deliver low regularity of adjoint variables and this fact

brings di�culties in studying the discrete approximations of optimal control problems with

state constraints. A series of articles is devoted to investigation of the approximation and

iterative solution methods for the optimal control problem with pointwise constraints

to the state ([4] � [9]). Compared to pointwise constraints on the state the gradient

constraints involve the gradient operator, which has a non-trivial kernel, and this further

complicates the problem. There is a few articles dealing with such kind of problems ([10]�

[16]). Thus, in [10] a theoretical analysis of an optimal control of semilinear elliptic equa-

tion with pointwise constraints on the gradient of the state is made. The investigation

of the convergence and rate of convergence of �nite element approximations to optimal

control problems with the constraints on the gradient of the state is the topic of articles

[11] � [13]. In [11] variational discretization of the controls is considered combined with

the lowest order Raviart-Thomas �nite element approximations of a mixed formulation

of the state equation. Controls are not discretized explicitely, but implicitly through the

optimality conditions associated with the discrete approximation to the optimal control

problem. This in particular leads to piecewise constant approximations to the state and

the adjoint state. In [12] the Lr-norm of the control is included in cost functional with
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r > d (d = 2, 3 is the dimension of the problem) to guarantee the required regularity of

the state. Variational discretization of the control problem then is investigated, as well as

piecewise constant approximations of the control. In both cases standard piecewise linear

and continuous �nite elements for the discretization of the state is used. Error bounds for

control and state are obtained depending on the value of r. Similar estimates are obtained

in [13], where Lr-norm in cost functional is included as well. In [14] semi-smooth Newton

methods and regularized active set methods are discussed for the solution of an elliptic

equation with gradient constraints. An analysis for a barrier method for optimization

with constraints on the gradient of the state can be found in [15]. Adaptive �nite ele-

ment methods for optimization problems for second order linear elliptic partial di�erential

equations subject to pointwise constraints of the gradient of the state are considered in

[16]. In a weak duality setting, i.e. without assuming a constraint quali�cation such as

the existence of a Slater point, residual based a posteriori error estimators are derived.

In this paper we consider an elliptic optimal control problem with distributed con-

trol, observation in a subdomain and pointwise constraints on the gradient of state. We

approximate this problem by �nite element scheme with piecewise constant elements for

control function and piecewise linear and continuous �nite elements for the discretization

of the state function. Pointwise bounds on the gradient of the discrete state are enforced

element-wise. We prove the strong convergence of �nite element approximation for this

problem by using well-known approach to convergence theory for variational inequalities

and minimization problems (cf., e.g. [17]).

Further we construct discrete saddle point problem and its iterative solution method.

For these purposes we use the theory of preconditioned Uzawa-type iterative methods for

saddle point problems developed in [18], [22], and applied for variational inequalities and

optimal control problems in [19] � [21].

Let us emphasize that the main advantage of the proposed iterative method is its easy

implementation: every iterative step includes only pointwise projections and solutions of

the linear algebraic equations with the same matrices for all iterations.

1 Optimal control problem and its approximation

Let Ω ⊂ R2 be a polygonal domain and Ω1 ⊆ Ω � its polygonal subdomain. De�ne

arbitrary functions yd, ud ∈ L2(Ω), and

functions y∗(x), u∗
1(x), u

∗
2(x) from C(Ω), such that

y∗(x) > 0, u∗
1(x) < 0 < u∗

2(x) at x ∈ Ω.
(1)

Let state problem is the Dirichlet problem for the Poisson equation:

y ∈ H1
0 (Ω) :

∫
Ω

∇y · ∇z dx =

∫
Ω

uzdx ∀ z ∈ H1
0 (Ω), (2)
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where u(x) is the control function and solution y(x) of equation (2) is state of the system.

De�ne the convex and closed sets of the constraints for control and state functions:

Uad = {u ∈ L2(Ω) : u
∗
1(x) 6 u(x) 6 u∗

2(x) a.e. in Ω},
Yad = {y ∈ H1

0 (Ω) : |∇y(x)| 6 y∗(x) a.e. in Ω}.

Let α > 0. Consider the following optimal control problem:

min
(y,u)∈K

{
J(y, u) =

1

2

∫
Ω1

(y − yd)
2 dx+

α

2

∫
Ω

(u− ud)
2 dx

}
,

K = {(y, u) : y is a solution of (2) and y ∈ Yad, u ∈ Uad}.
(3)

Lemma 1. Problem (3) has a unique solution.

Proof. Set K is a non-empty convex compact set in H1
0 (Ω) × L2(Ω), containing zero

function, and the functional J is continuous. Therefore the existence of the minimum

point of J on the set K follows from Weierstrass theorem.

To prove the uniqueness of the solution, we prove that the functional J is strictly

convex on the set K. In fact, let (y1, u1) ̸= (y2, u2) be two di�erent elements of K.

Then u1 ̸= u2, because otherwise y1 = y2 according to the equation (2). Now, from

the convexity of the functional in y and strict convexity in u follows inequality J((y1 +

y2)/2, (u1 + u2)/2) < 1/2J(y1, u1) + 1/2J(y2, u2), i.e. strict convexity of J on K.

Below we use the notation ∥ · ∥0,p for norms of Lebesgue spaces Lp(Ω) and ∥ · ∥l,p for
norms of Sobolev spaces W l

p(Ω) for 1 6 p 6 ∞ and integers l > 0.

Let Th =
∪
ei be a conforming and regular triangulation of the domain Ω, h be

the maximum diameter of elements e ∈ Th ([23]). We assume that the triangulation is

compatible with Ω1 in the sense that Ω1 consists of a number of triangles e ∈ T1h ⊆ Th.

We de�ne the �nite element spaces

Hh = {yh ∈ H1
0 (Ω) : yh(x) ∈ P1 on e ∈ Th},

Uh = {uh ∈ L2(Ω) : uh(x) ∈ P0 on e ∈ Th},

where Pk is the set of polynomials of degree at most k in all variables. We denote by πh

the operator of integral averaging of functions from L1(Ω), with values in Uh:

πhu(x) = |ei|−1

∫
ei

u(t)dt for x ∈ ei, |ei| = meas ei.

Let ydh = πhyd, udh = πhud, y
∗
h = πhy

∗, u∗
1h = πhu

∗
1, u

∗
2h = πhu

∗
2. Then y∗h(x) > 0, u∗

1h(x) <

0 < u∗
2h(x). By the continuity in average of functions yd and ud the following limit relations

hold:

∥ydh − yd∥0,2 → 0, ∥udh − ud∥0,2 → 0,
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and from uniform continuity of functions y∗, u∗
1 and u∗

2, it follows that

∥y∗h − y∗∥0,∞ → 0, ∥u∗
1h − u∗

1∥0,∞ → 0, ∥u∗
2h − u∗

2∥0,∞ → 0. (4)

We de�ne a convex and closed sets of the constraints on the mesh control and state

functions:

Y h
ad = {yh ∈ Uh : |∇yh| 6 y∗h on Ω}, Uh

ad = {uh ∈ Uh : u∗
1h 6 uh 6 u∗

2h on Ω}.

Discrete state problem is the approximation by the �nite element method of the boundary

value problem (2):

yh ∈ Hh :

∫
Ω

∇yh · ∇zh dx =

∫
Ω

uhzh dx ∀ zh ∈ Hh, uh ∈ Uh. (5)

Objective function Jh : Hh × Uh → R is de�ned by the equality

Jh(yh, uh) =
1

2

∫
Ω1

(yh − ydh)
2 dx+

α

2

∫
Ω

(uh − udh)
2 dx.

It is easy to verify that the discrete optimal control problem

min
(yh,uh)∈Kh

Jh(yh, uh),

Kh = {(yh, uh) : yh is a solution of (5) and yh ∈ Y h
ad, uh ∈ Uh

ad}
(6)

has a unique solution (yh, uh). The reasoning is the same as that for problem (3), namely,

set Kh is a nonempty convex compact, and the function Jh is continuous and strictly

convex on Kh.

2 Convergence of the discrete scheme

Let (yh, uh) be the solution of problem (6) for a �xed h while (y, u) be the solution

of problem (3). We prove the strong convergence (yh, uh) → (y, u) as h → 0 by using

the traditional approach to the study of the convergence of discrete approximations for

variational inequalities and minimization problems (see eg., [17], Chapter 1, �4.3, 4.4).

This approach is based on the proving the approximation of K by the family of sets {Kh}h
and functional J by the family of functions {Jh}h.

The fact that sets Kh, de�ned in (6), approximate the set K, de�ned in (3), delivered

in the following two lemmas.

Lemma 2. If {(yh, uh)} ∈ Kh and (yh, uh) → (y, u) weakly in H1
0 (Ω) × L2(Ω), then

(y, u) ∈ K.
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Proof. Let {(yh, uh)} ∈ Kh and (yh, uh) → (y, u) weakly in H1
0 (Ω) × L2(Ω). We �rst

prove that (y, u) satis�es equation (2), and then that (y, u) ∈ Yad × Uad.

For any z ∈ H1
0 (Ω), take the sequence {zh} ∈ Hh, which is strongly converges to z in

H1
0 (Ω). Passing to the limit as h → 0 in the equation (5), we get that (y, u) satis�es (2).

Take an arbitrary ε > 0 and consider the sets Y ε
ad = {y ∈ L2(Ω) : |∇y(x)| 6 y∗(x) +

ε a.e. in Ω} and U ε
ad = {u ∈ L2(Ω) : u

∗
1(x) − ε 6 u(x) 6 u∗

2(x) + ε a.e. in Ω}. Due to

the limit relations (4) it is obvious that Y h
ad ⊂ Y ε

ad and Uh
ad ⊂ U ε

ad for su�ciently small

h 6 h(ε). Since the convex and closed sets Y ε
ad and U ε

ad are weakly closed, so y ∈ Y ε
ad and

u ∈ U ε
ad. It remains to note that Yad =

∩
ε>0

Y ε
ad and Uad =

∩
ε>0

U ε
ad and y ∈ Y ε

ad, u ∈ U ε
ad for

all ε > 0, so y ∈ Yad and u ∈ Uad.

Lemma 3. For every (y, u) ∈ K there exists a sequence {(yh, uh)} ∈ Kh such that

(yh, uh) → (y, u) strongly in H1
0 (Ω)× L2(Ω).

Proof. The proof is divided into two parts. First we prove that any (y, u) ∈ K

is the limit of the functions (yn, un) ∈ K, having additional smoothness, and such that

(yn, un) ∈ intYad×intUad. Then, for such functions we construct the sequence {(yh, uh)} ∈
Kh converging to (y, u) strongly in H1

0 (Ω)× L2(Ω).

In the proof of the �rst assertion we will use the following two facts ([24], [25]):

1. If g ∈ L∞(Ω), then the solution y of the boundary value problem

−△y = g(x), x ∈ Ω, y(x) = 0, x ∈ ∂Ω, (7)

belongs to W 2
p (Ω) with some p = 2 + ε, ε > 0, i.e. y ∈ W 1

∞(Ω), and the following

estimate holds

∥y∥1,∞ 6 c ∥u∥2,p 6 c ∥g∥0,∞. (8)

2. If y ∈ W 2
p (Ω) is the solution of (7) with g ∈ L∞(Ω), and yh is the FEM solution

yh ∈ Hh :

∫
Ω

∇yh · ∇vh dx =

∫
Ω

gvh dx ∀ vh ∈ Hh,

then

∥y − yh∥1,∞ 6 c h1−2/p ∥g∥0,∞ → 0 ïðè h → 0. (9)

By conditions (1) there exists a su�ciently small δ > 0 such that

u∗
1(x) + 3δ 6 0, u∗

2(x)− 3δ > 0 and y∗(x)− 3δ > 0 a.e. in Ω.

Take an arbitrary pair of (y, u) ∈ K and let (yρ, uρ) = (ρ y, ρ u) with 0 < ρ < 1. Then

(yρ, uρ) ∈ K and (yρ, uρ) → (y, u) in H1
0 (Ω)×L2(Ω) when ρ → 1− 0. We �x a maximum

value ρ such that

uρ(x) ∈ [u∗
1(x) + 3δ, u∗

2(x)− 3δ] and |∇yρ(x)| 6 y∗ − 3δ a.e. in Ω.
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We now take a sequence un ∈ C∞(Ω), which converges to uρ in L∞(Ω) and let yn solution

of (7) with right hand side un. These functions belong to W 2
p (Ω), p = 2 + ε, ε > 0, and

by virtue of (8) satisfy the relations:

∥yn − yρ∥1,∞ 6 c ∥un − u∥0,∞ → 0 when n → ∞.

Therefore, there exists a number n = n(δ) such that holds the following inequalities

|∇yn(x)| 6 y∗(x)− 2δ and un(x) ∈ [u∗
1(x) + 2δ, u∗

2(x)− 2δ] a.e. in Ω.

So, to prove the lemma it su�ces to construct the sequence {(yh, uh)} ∈ Kh, which is

converges to a pair (y, u) ∈ K strongly in H1
0 (Ω)× L2(Ω) such that

u(x) ∈ [u∗
1(x) + 2δ, u∗

2(x)− 2δ], |∇y(x)| 6 y∗(x)− 2δ a.e. in Ω,

u ∈ C(Ω), y ∈ W 2
p (Ω), p = 2 + ε, ε > 0.

Let uh = πhu. Then uh(x) ∈ [u∗
1h(x) + 2δ, u∗

2h(x)− 2δ] in Ω and ∥uh − u∥0,∞ → 0, h → 0.

Denote by ỹh solution of (7) with the right hand side uh. Then the estimate (8) implies

that ∥y− ỹh∥1,∞ 6 c ∥u−uh∥0,∞ → 0, h → 0. Thus, with h 6 h1(δ) following inequalities

holds:

|∇(y − ỹh)(x)| 6 δ ⇒ |∇ỹh(x)| 6 y∗(x)− δ in Ω.

Now let yh is the FEM solution

yh ∈ Hh :

∫
Ω

∇yh · ∇vh dx =

∫
Ω

uhvh dx ∀ vh ∈ Hh.

In accordance with (9)

∥ỹ − yh∥1,∞ 6 c h1−2/p ∥uh∥0,∞ 6 c h1−2/p → 0 when h → 0.

This means that the inequality

|∇(yh − ỹ)(x)| 6 δ ⇒ |∇yh(x)| 6 y∗(x) in Ω

is true for h 6 h2(δ). Thus, the pair (yh, uh) belongs to Kh for su�ciently small h and

strongly converges to (y, u) in H1
0 (Ω)× L2(Ω) when h → 0.

Theorem 1. Solutions {(yh, uh)} of the problem (6) strongly converge to the solution

(y, u) of (3) in H1
0 (Ω)× L2(Ω) when h → 0.

Proof. a) Weak convergence. Let (yh, uh) ∈ Kh be the solution of (6). Then (yh, uh)

is bounded in H1
0 (Ω)×L2(Ω) uniformly with respect to h. This allows to select from the

sequence {(yh, uh)} weakly converging in H1
0 (Ω) × L2(Ω) subsequence. Keep for it the

notation {(yh, uh)}. By Lemma 2 its limit (y, u) belongs to K. Further, since yh → y,
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ydh → yd, udh → ud strongly and uh → u weakly in L2(Ω), and the quadratic functional

j(w) =
∫
Ω
w2 dx is weakly lower semicontinuous, then

lim inf
h→0

Jh(yh, uh) = lim inf
h→0

{1
2

∫
Ω1

(yh − ydh)
2 dx+

α

2

∫
Ω

(uh − udh)
2 dx

}
> J(y, u).

Take an arbitrary (z, w) ∈ K. By Lemma 3 there exists {(zh, wh)} ∈ Kh : (zh, wh) →
(z, w) strongly in H1

0 (Ω)× L2(Ω), so lim
h→0

Jh(zh, wh) = J(z, w). As a result,

J(y, u) 6 lim inf
h→0

Jh(yh, uh) 6 lim
h→0

Jh(zh, wh) = J(z, w) ∀ (z, w) ∈ K,

and (y, u) is the solution of problem (3). Since the solution (y, u) is unique, then the whole

sequence {(yh, uh)} of solutions to (6) weakly inH1
0 (Ω)×L2(Ω) converges to (y, u). Indeed,

suppose that {(yh, uh)} does not converge weakly to (y, u). This means that there exists

a subsequence {(yhn , uhn)}, the number ε0 > 0 and an element (z, w) ∈ H1
0 (Ω) × L2(Ω)

such that ∣∣∣ ∫
Ω

∇(yhn − y) · ∇z dx+

∫
Ω

(uhn − u)w dx
∣∣∣ > ε0 ∀h. (10)

But the subsequence {(yhn , uhn)} is bounded, so, in accordance with proven above, it con-

tains a subsequence which weakly in H1
0 (Ω)×L2(Ω) converges to (y, u). This contradicts

to (10).

b) Strong convergence uh → u. First we prove, that lim
h→0

J(yh, uh) = J(y, u). Let a

sequence (zh, wh) ∈ Kh be such, that (zh, wh) → (y, u) strongly in H1
0 (Ω)×L2(Ω) (lemma

3). Then

lim sup
h→0

J(yh, uh) 6 lim
h→0

J(zh, wh) = J(y, u).

Together with the inequality J(y, u) 6 lim inf
h→0

J(yh, uh) this gives lim
h→0

J(yh, uh) = J(y, u).

Since yh strongly in L2(Ω) converge to y, then
∫
Ω
(yh−ydh)

2 dx →
∫
Ω
(y−yd)

2 dx. From this

and limit relation J(yh, uh) → J(y, u) it follows that

∫
Ω

(uh − udh)
2 dx →

∫
Ω

(u− ud)
2 dx.

Together with weak in L2(Ω) convergence of uh to u, this implies a strong convergence uh

to u in L2(Ω).

c) Strong convergence yh → y in H1
0 (Ω). Take a sequence {ỹh} : ỹh → y strongly in

H1
0 (Ω) and use the state equations (5) and (2) and Friedrichs inequality∫

Ω

y2h dx 6 c2f

∫
Ω

|∇yh|2 dx ∀ yh ∈ Hh. (11)
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We obtain:∫
Ω

|∇(yh − ỹh)|2 dx =

∫
Ω

uh(yh − ỹh) dx−
∫
Ω

∇ỹh · ∇(yh − ỹh) dx =

=

∫
Ω

∇(y − ỹh) · ∇(yh − ỹh) dx+

∫
Ω

(uh − u)(yh − ỹh) dx 6

6
(∫

Ω

|∇(yh − ỹh)|2 dx
)1/2((∫

Ω

|∇(y − ỹh)|2 dx
)1/2

+ cf∥u− uh∥L2(Ω)

)
.

Hence it follows yh − ỹh → 0 in H1
0 (Ω) and, so, yh → y in H1

0 (Ω).

3 Discrete saddle point problem

We introduce an auxiliary function p̄h = ∇yh ∈ Uh×Uh and de�ne a set of constraints

P h
ad = {p̄h ∈ Uh × Uh : |p̄h(x)| 6 y∗h(x) a.e. in Ω}.

Now the problem (6) can be written as

min
(yh,uh,p̄h)∈Wh

{
Jh(yh, uh) =

1

2

∫
Ω1

(yh − ydh)
2 dx+

α

2

∫
Ω

(uh − udh)
2 dx

}
, (12)

Wh = {(yh, uh, p̄h) : p̄h ∈ P h
ad, uh ∈ Uh

ad, p̄h = ∇yh, yh is a solution of (5)}.

De�ne the corresponding Lagrangian function by the equality

Lh(yh, uh, p̄h, λh, µ̄h) = Jh(yh, uh) +

∫
Ω

∇yh · ∇λh dx−

−
∫
Ω

uhλh dx+

∫
Ω

µ̄h(∇yh − p̄h) dx, (13)

where the Lagrange multipliers λh ∈ Hh, µ̄h ∈ Uh × Uh, and the saddle point are looking

under constraints on direct variables p̄h ∈ P h
ad, uh ∈ Uh

ad.

For further formulation the saddle point problem in algebraic form we assign to the

functions of the �nite element spaces Hh and Uh the vectors of their nodal parameters. Let

ωh = {ti}mi=1 be the set of vertices of triangles e ∈ Th, lying in Ω, m = cardωh, ξh = {ti}si=1

be the set of barycenters of the triangles e ∈ Th. Put in correspondence function yh ∈ Hh

and vector y ∈ Rm with coordinates yi = yh(ti), ti ∈ ωh (with any node numbering ti),

and the functions uh ∈ Uh � vector u ∈ Rs with coordinates ui = uh(ti), ti ∈ ξh. We will

use the notation y ⇔ yh, u ⇔ uh.

Further through yd, ud, y
∗, u∗

1, u
∗
2 we denote vectors of nodal parameters of the corre-

sponding mesh functions.
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De�ne the matrices L ∈ Rm×m, Mu ∈ Rs×s, My ∈ Rm×m, S ∈ Rs×m, Ri ∈ Rm×s (i =

1, 2) by the equalities:

(Ly, z) =

∫
Ω

∇yh · ∇zh dx, (Muu, v) =

∫
Ω

uh(x)vh(x) dx, (Myy, z) =

∫
Ω1

yhzh dx,

(Riy, v) =

∫
Ω

∂yh
∂xi

(x)vh(x) dx, (Su, y) =

∫
Ω

uh(x)yh(x) dx, (S1u, y) =

∫
Ω1

uh(x)yh(x) dx.

These equalities must be satis�ed for all y, z ∈ Rm and u, v ∈ Rs. Here yh, zh ∈ Hh, yh ⇔
u, zh ⇔ z and, respectively, uh, vh ∈ Uh, uh ⇔ u, vh ⇔ v. By construction, Mu is a

diagonal positive de�nite matrix.

We use the notations Mu = diag(Mu,Mu), R =

(
R1

R2

)
. From the de�nitions of the

matrices and the Friedrichs inequality (11) follows:

(Myy, y) 6 c2f (Ly, y), (Su, y) 6 cf (Muu, u)
1/2(Ly, y)1/2,

(Ry, p̄) 6 (Ly, y)1/2(Mup̄, p̄)
1/2.

(14)

Lagrange function (13) and a sets of constraints in terms of vectors of nodal parameters

of mesh functions take the form:

L(y, u, p̄, λ, µ̄) = 1

2
(Myy, y) + (S1yd, y) +

α

2
(Mu(u− ud), u− ud)+

+ (Ly − Su, λ) + (Ry −Mup̄, µ̄),

Pad = {p̄ ∈ Rs × Rs : p21j + p22j 6 y∗2j for all j = 1, 2, . . . , s},

Uad = {u ∈ Rs : ui ∈ [u∗
1i, u

∗
2i] for all i = 1, 2, . . . ,m}.

Let φp(p̄) and φu(u) be the indicator functions of the sets Pad and Uad. Then the corre-

sponding saddle point problem is
My 0 0 L RT

0 0 0 0 −Mu

0 0 αMu −ST 0

L 0 −S 0 0

R −Mu 0 0 0




y

p̄

u

λ

µ̄

+


−S1yd

∂φp(p̄)

∂φu(u)−Muud

0

0

 ∋ 0. (15)

The submatrix My 0 0

0 0 0

0 0 αMu


of this problem is only positive semide�nite. In order to convert (15) to an equivalent

saddle point problem with a positive de�nite submatrix we use both equation Ly = Su
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and Ry = Mup̄. Obvious transformations of the �rst two relations in (15) lead to the

system
My + rL 0 −rS L RT

−rR rMu 0 0 −Mu

0 0 αMu −ST 0

L 0 −S 0 0

R −Mu 0 0 0




y

p̄

u

λ

µ̄

+


−S1yd

∂φp(p̄)

∂φu(u)−Muud

0

0

 ∋ 0. (16)

Further we consider following scalar matrices:

Kr =

 r −0.5r −0.5rcf

−0.5r r 0

−0.5rcf 0 α

 , Kr =

r + c2f 0.5r 0.5rcf

0.5r r 0

0.5rcf 0 α

 .

Lemma 4. Let 0 < r < 3α/c2f . Then the matrices

A =

My + rL 0 −rS

−rR rMu 0

0 0 αMu

 and A0 =

L 0 0

0 Mu 0

0 0 Mu


are spectrally equivalent, i.e.

m(r)(A0x, x) 6 (Ax, x) 6 M(r)(A0x, x) ∀ x = (y, p̄, u)T .

Here m(r) > 0 is the minimum eigenvalue of Kr, and M(r) is the maximum eigenvalue

of Kr.

Proof. First, we note that due to Sylvester criterion condition 0 < r < 3α/c2f provides

positive de�niteness of the matrix Kr. Next, using the estimates (14), for any vector

x = (y, p̄, u)T we obtain:

(Ax, x) = r(Ly, y) + (Myy, y) + r(Mup̄, p̄) + α(Muu, u)− r(Su, y)− r(Ry, p̄) >
> r(Ly, y) + r(Mup̄, p̄) + α(Muu, u)− r cf (Muu, u)

1/2(Ly, y)1/2−
− r(Ly, y)1/2(Mup̄, p̄)

1/2 > m(r)
(
(Lu, u) + (Mup̄, p̄) + (Muu, u)

)
= m(r)(A0x, x).

Similarly we can prove the second inequality.

Introduce the notations:

A =

My + rL 0 −rS

−rR rMu 0

0 0 αMu

 , B =

(
L 0 −S

R −Mu 0

)
,

x = (y, p̄, u)T , η = (λ, µ̄)T , f = (Myyd, 0,Muud)
T , φ(x) = φu(u) + φp(p̄).
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Then the problem (16) can be written as(
A −BT

−B 0

)(
x

η

)
+

(
∂φ(x)

0

)
∋

(
f

0

)
. (17)

We assume that the parameter r is chosen so that 0 < r < 3α/c2f . Then the matrix

A is positive de�nite. In its turn, the matrix B has full column rank, since its block(
L 0

R −Mu

)
is a nonsingular matrix. Vector with coordinates u = 0, p̄ = 0, y = 0

belongs to interior of the constraint sets, as well as to the kernel of matrix B. Thus, all

the assumptions of Lemma 1 from [18] are ful�lled, and this implies the existence of a

solution (y, p̄, u, λ, µ̄) to problem (16) with unique (y, p̄, u) (the components η = (λ, µ) of

the solution are not uniquely de�ned). Corresponding to the vector (y, p̄, u) mesh function

(yh, p̄h, uh) coincides with the solution of the discrete optimal control problem (12).

4 Preconditioned Uzawa-type iterative method

From the system (17) we obtain the equation for η = (λ, µ̄)T :

B(A+ ∂φ)−1(BTη + f) = 0

To solve it we apply one-step iterative method

1

τ
D(ηk+1 − ηk) +B(A+ ∂φ)−1(BTηk + f) = 0 (18)

with a symmetric and positive de�nite matrix D. This is preconditioned Uzawa method

for solving (17). By Theorem 1 from [18], it converges from any initial approximation η0,

if the following condition holds for the pair preconditioner D � iteration parameter τ :

(Dη, η) >
τ

2
(BA−1

s BTη, η) ∀ η ̸= 0, (19)

where As = 0.5(A+AT ) is symmetric part of the matrix A. Moreover the sequence {ηk}k
converges to some vector η∗ from the set of solutions in the energy norm of the matrix D:

∥ηk − η∗∥D → 0 ïðè k → ∞.

Since, in general there are no estimates of the rate of convergence of the method (18), then

it makes sense to choose a preconditioner assuming that the problem is solved without

constraints, i.e. ∂φ = 0. In this case, the optimal preconditioner matrix is spectrally

equivalent to matrix (BA−1BT )s = BA−1
s BT .

By Lemma 4 matrix As is spectrally equivalent to the matrix

A0 =

L 0 0

0 Mu 0

0 0 Mu

 .

11



Direct calculations yield

BA−1
0 BT =

(
L+ SM−1

u ST RT

R RL−1RT +Mu

)
.

Matrix BA−1
0 BT is spectrally equivalent to BA−1

s BT , therefore it can be taken as a pre-

conditioner in the Uzawa method. However, in this case, on each step of the iterative

method it is necessary to solve the coupled system of equations for λ and µ̄. A more e�-

cient method is to implement a block-diagonal preconditioner, which can be taken thanks

to the following lemma.

Lemma 5. Let D =

(
L 0

0 Mu

)
. Then

3−
√
5

2
(Dη, η) 6 (BA−1

0 BTη, η) 6 max{2 + c2f , 3} (Dη, η) ∀ η = (λ, µ̄)T .

Proof. Straightforward calculations lead to the equality

(BA−1
0 BTη, η) = (Lλ, λ) + (M−1

u STλ, STλ) + (Muµ̄, µ̄) + (RL−1RT µ̄, µ̄) + 2(Rλ, µ̄).

To estimate the right-hand side we use the following inequalities (hereinafter y ⇔ yh, u ⇔
uh, p̄ ⇔ p̄h):

(L−1RT p̄, RT p̄)1/2 = sup
yh∈Hh

∫
Ω

∇yh · p̄h dx( ∫
Ω

|∇yh|2 dx
)1/2 6

(∫
Ω

|p̄h|2 dx
)1/2

= (Mup̄, p̄)
1/2,

(M−1
u STy, STy)1/2 = sup

uh∈Uh

∫
Ω

yhuh dx( ∫
Ω

u2
h dx

)1/2 6
(∫

Ω

y2h dx
)1/2

6 cf (Ly, y)
1/2.

Using the �rst auxiliary inequality, we obtain the lower bound

(BA−1
0 BTη, η) > (Lλ, λ)+(Muµ̄, µ̄)+(L−1RT µ̄, RT µ̄)−2(L−1RT µ̄, RT µ̄)1/2(Lλ, λ)1/2 >

> (1− ε)(Lλ, λ) + (1− ε)(Muµ̄, µ̄) + (1 + ε− 1/ε)(L−1RT µ̄, RT µ̄).

Let now ε be the positive solution of the equation 1 + ε− 1/ε = 0, then

(BA−1
0 BTη, η) > 3−

√
5

2

(
(Lλ, λ) + (Muµ̄, µ̄)

)
.

To obtain upper bound we use both auxiliary inequalities:

(BA−1
0 BTη, η) 6 (1 + c2f )(Lλ, λ) + 2(Muµ̄, µ̄) + 2(Lλ, λ)1/2(Muµ̄, µ̄)

1/2 6
6 (2 + c2f )(Lλ, λ) + 3(Muµ̄, µ̄).

12



The results of Lemmas 4 and 5 ensure the spectral equivalence of matrices BA−1
s BT è D:

cminD 6 BA−1
s BT 6 cmaxD,

where cmin = (3−
√
5)/(2M(r)) and cmax = max{2+ c2f , 3}/m(r), and the constants m(r)

and M(r) are de�ned in Lemma 4.

Theorem 2. Let 0 < r < 3α/c2f and m(r) > 0 be minimal eigenvalue of Kr, de�ned in

Lemma 4. Then Uzawa method (18) for problem (16) converges if

0 < τ <
2m(r)

max{2 + c2f , 3}
. (20)

Proof. As noted above, it su�ces to prove the inequality (19). But from Lemma 5 it

follows that

BA−1
s BT 6 m(r)−1BA−1

0 BT 6 max{2 + c2f , 3}m(r)−1D,

so D > τ/2 BA−1
s BT due to (20).

4.1 Implementation of the Preconditioned Uzawa method

It is easy to see that one iteration of method (18) reduces to implementation of the

following calculations for the known λk è µ̄k:

1. uk+1 = (αMu + ∂φu)
−1(STλk +Muud) = PrUad

(α−1M−1
u (STλk +Muud);

2. yk+1 = (My + rL)−1(S1yd + rSuk+1 − Lλk −RT µ̄k);

3. p̄k+1 = (rMu + ∂φp)
−1(Muµ̄

k + rRyk+1) = PrPad
(r−1µ̄k +M

−1

u Ryk+1);

4. λk+1 = λk + τ(yk+1 − L−1Suk+1);

5. µ̄k+1 = µ̄k + τ(M
−1

u Ryk+1 − p̄k+1).

By virtue of diagonality of the matrices Mu and Mu = diag (Mu,Mu) and pointwise

constraints for u ∈ Uad and p̄ ∈ Pad the determination of uk+1 and p̄k+1 reduces to the

pointwise projections of known vectors to the corresponding sets of constraints. More

precisely, for a �xed i:

uk+1
i = Pr[−u∗

1i,u
∗
2i]

( 1

αmii

(STλk +Muud)i

)
,

where mii is a diagonal element Mu, and

|p̄k+1
i | = Pr[0,y∗i ]|F̄ |, pk+1

i1 = |p̄k+1
i |−1F1, p

k+1
i2 = |p̄k+1

i |−1F2,

where F̄ = (F1, F2) = (r−1µ̄k +M
−1

u Ryk+1)i.

13



4.2 Control of accuracy and stopping criterion

When the saddle point problem (17) is solved by any iterative method, we �nd not only

an approximation of (xk, ηk) to the exact solution (x, η), but also the vector γk ∈ ∂φ(xk)

� the unique selection from the set ∂φ(xk). We de�ne the components of the residual

vector by the equalities

rkx = f − Axk − γk +BTηk, rkη = −Bxk.

Then the error vector (x− xk, η − ηk)T satis�es the system(
A −BT

B 0

)(
x− xk

η − ηk

)
+

(
∂φ(x)− γk

0

)
∋

(
rkx
rkη

)
.

Multiplying this system scalarly by the vector (x−xk, η−ηk)T and applying the inequality

(∂φ(x)− ∂φ(xk), x− xk) > 0, we get

(A(x− xk), x− xk) 6 (rkx, x− xk) + (rkη , η − ηk).

Hence

∥x− xk∥2As
6 ∥rkx∥A−1

s
∥x− xk∥As + |(rkη , η − ηk)|. (21)

Since the inclusion Ax − BTη + ∂φ(x) ∋ f is solved exactly at each iteration of Uzawa

method (18), therefore rkx = 0 ∀ k, and estimate (21) takes the form

∥x− xk∥As 6 |(rkη , η − ηk)| 6 ∥η − ηk∥1/2D ∥rkη∥
1/2

D−1 ∀ k, (22)

where D is the preconditioner of this method. Since ∥η−ηk∥D → 0 for k → ∞, inequality

(22) gives the information about error ∥x − xk∥As through the estimate of the norm of

the residual component ∥rkη∥D−1 , namely,

∥x− xk∥As = o(∥rkη∥
1/2

D−1) when k → ∞.

In the problem (16) vector rkη = (Lyk−Suk, Ryk−Mup̄
k), so the upper bound for number

of iterations is the value

δk = ∥rkη∥
1/2

D−1 =
(
(Lyk − Suk, yk − L−1Suk) + (Ryk −Mup̄

k,M
−1

u Ryk − p̄k)
)1/2

.

Note that the vectors

Lyk−Suk, yk−L−1Suk = (λk − λk−1)/τ, Ryk−Mup̄
k, M−1

u Ryk−p̄k = (µ̄k+1 − µ̄k)/τ,

are computed when implementing the algorithm, thus, control of the value δk does not

lead to additional computational cost.
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Remark 1. Discrete objective function can be constructed by using approximations of

the integrals by composite quadrature formulas, for example, on the basis of one-point

quadrature formulae with the node coinciding with the barycenter ae of the triangle e ∈ Th:∫
e

g(x) dx ≈ Se(g) = mease g(ae),

∫
Ω1

g(x) dx ≈ SΩ1(g) =
∑

e∈Ω̄1∩Th

Se(g).

In this case, the objective function Jh : Hh × Uh → R de�ned by

Jh(yh, uh) =
1

2
SΩ1((yh − ydh)

2) +
α

2

∫
Ω

(uh − udh)
2 dx.

Discrete optimal control problem

min
(yh,uh)∈Kh

Jh(yh, uh),

Kh = {(yh, uh) : yh is a solution of (5) and yh ∈ Y h
ad, uh ∈ Uh

ad}

has a unique solution (yh, uh). Results about the convergence of discrete scheme and Uzawa

iterative method remain in force. Moreover bounds on parameters r and τ are the same

as in preceding case.
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