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CBSA3b OBOBLUEHHBIX TMIEPTEOMETPUUYECKUX ®YHKLUMUI CITELUAJILHOIO BUJIA U
MOJAUPULIMPOBAHHBIX ®YHKLIUA BECCEJISA

A.B. l'epacumos, A.Il. Kupnnunukos

Kaszanckuri HALIHOHAJIbHBIH HCCJIEN0BATE/IbCKHI TEXHOJIOTHYECKHH VYHHBEPCHTET

Summary

A relationship between generalized hypergeometric functions of a special type and modified Bessel
functions has been established. Using this relationship the solution of inhomogeneous differential equations
of Bessel type containing even degrees of an independent variable in the right-hand part can be expressed in
a form convenient for engineering and technical applications.
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AHHOTAUMSA

YcraHoBJ/IeHa CBSA3b OOOOLIEHHbIX TMIIePreoMeTpHUeCKUX (QYHKLMH CllelHalbHOro BUaa H MOIAH(HLH-
poBaHHbIX (DyHKUMI Beccess, kotopasi no3BoJisieT 3anucarh pelleHHe HeoAHOPOHbIX AUddepeHLnalbHbIX
ypaBHeHHU 6eCcCesIeBCKOro TUIla ¢ IIPaBO# YacTblo, cojepKalleil YETHbIE CTENEHH HE3aBUCHMOI IePEMEHHOH,
B YZL00HOM 151 HH2KEHEPHbIX H TEXHHYECKHUX [TPHJIOKEHUT! BULE.

KatoueBbie cioBa: runepreomerpuueckue GyHKUHM, MoaudULUpoBaHHble hyHKUuM Beccens, mudpge-

peHlHaJbHbI€ YDABHEHUS THIIA Beccens.

Introduction

Within the frames of a relatively large class of problems [1-5] on restoration of the structure of quasi-
stationary electromagnetic and temperature fields of a high-frequency induction discharge from measured
values of one of its components, a necessity arises to obtain exact analytical solutions of differential equations
of the form

v(@) + LD oy(a) = a2 (1)

(here C' = b2 = const is a nonnegative constant depending on boundary conditions), to which MaxwelltAIlLs
equations for electromagnetic field are reduced in the general case. In the case of C' = 0 (corresponding to one-
dimensional statement of the problem from physical point of view), a particular solution of Eq. (1), apparently,
reduces to a parabolic solution

1 2n+2' (2)

y(z) = mfc

Let us introduce new variables & = v/C'z = bz , in which the initial equation will be rewritten as

y'(:ﬁ) ~ j?n

y' () + —y(@) = [EICEEk (3)
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[t can be easily seen that written in such a form equation (3) is one of the variants of inhomogeneous Bessel
equations for unknown function ¥(z) , the solution of which is given, for instance, in Ref. [6].

N Gk - T
\I](.’II) = W S2n+1,0 ((Ee 2) . (4)

where s, ,,(z) is a so-called Lommel function usually defined as [7]

(5)

S () =

AR 1'/L—I/+3./L+V+3. x2
2 ’ 2 4

F _—
(w—v+Dp+v+1)'72

where 1 Iy is a generalized hypergeometric function [8]. So taking account for Eq. (6), Eq. (4) can be rewritten

as follows
~2

1 z
V(i) = —————— 2O R (1;n+2;n+2;—). 6
(z) 200+ 12 1h2 1 (6)

Solutions in the form of Egs. (4) and (6) are inconvenient for technical and engineering applications since
Lommel functions as well as hypergeometric functions, are not included into a standard tool kit of special
functions used in reference tables and routine libraries. However, these expressions can be reduced to the form,
which is more familiar for experts in the field of mathematical and engineering physics.

1. Method of solution

Let us examine expansion of generalized hypergeometric functions ,F, into their Maclaurin series. In
particular, for 1 F» function the series reads as

e ok

a;
1Fo(a; b1 b2; 2) Z
= Ji(

where (a)g, (b1,2)r are the corresponding PohgammertAllls symbols

(a)k_a(a+1)...(a+k_1)_r(§(7;k)
and I(b 5
+
(h12)k =brabia+1)...(bia+k—1)= ﬁ
For natural values of @ and b, 2 , we obtain
B _(n+k-1)!
and then
7 oo 1 ~2k
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4n+1 e jk 2
_ 2
= [(n + 1)]] 72(nt1) Z (2’%!) :
k=n-+1

n+1

The last expression with an accuracy to the factor [(n + 1)!]? , preceding the sum, coincides with a

F2(n+1)
well-known expansion [9, 10] of a modified Bessel function of the zeroth order I into its Maclaurin series and,

therefore,
~2 gnt1 0 =k \ 2
15 (1;n+2;n+2;x—> = [(n+ D gy Z ( : ) -

4 72(n+1) 2k

k=n-+1
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= [(n+1)!] 72(n+1) [Z (2’%!) - Z (2’%!) -
k=0 k=0
4n+1 n jk 2
_ 2 5
=0

(the relationship which first establishes a link between generalized hypergeometric functions of the special kind
and modified Bessel functions) and

jZ(nJrl)

s 2
Sont1,0 (T€'7) = mle <1;n+2;”+2; Z) =

=4"(n!)?

wor- () oo 55

y(z) = (g:—fl'>2 [Io(bx) _pznj (‘;’;ﬁﬂ _

Finally we end up with

2. Results and conclusions

The obtained relationship is a final formula for unknown function y(x), written in a rather simple and
physically transparent form. In particular, the expression in square brackets is nothing but a difference of the
modified Bessel functions and the sums of the first (n+1) terms of the function expansion into its Taylors series
near the point x=0. It is easy to verify that in the limit C' — 0, Eq. (8) gives us exactly Eq. (2),andat b =1,
we obtain an especially simple solution

p=0

Let us note that the results obtained in this work can be useful both for experts in the field of mathematical
simulation of various plasma devices based on the principle of inductive gas heating and, perhaps, in several
adjacent regions of engineering and mathematical physics.
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