УДК 517.958

ОБРАТНЫЕ СПЕКТРАЛЬНЫЕ ЗАДАЧИ И МЕТОД КОЛЛОКАЦИИ В ТЕОРИИ СЛАБОНАПРАВЛЯЮЩИХ ДИЭЛЕКТРИЧЕСКИХ ВОЛНОВОДОВ¹⁾ А.О. СПИРИДОНОВ, А.И. РЕПИНА, Е.М. КАРЧЕВСКИЙ

Kaзaнский (Приволжский) федеральный университет E-mail sasha_ens@mail.ru; airepinas@gmail.com; ekarchev@yandex.ru

INVERSE SPECTRAL PROBLEMS AND COLLOCATION METHOD IN THE SPECTRAL THEORY OF WEAKLY GUIDING STEP-INDEX OPTICAL FIBRES A.O. SPIRIDONOV, A.I. REPINA, E.M. KARCHEVSKII

Kazan Federal University

Аннотация

Предлагается новый метод расчета диэлектрической проницаемости оптических волокон с использованием измерения постоянных распространения. Алгоритм основан на приближенном решении нелинейной несамосопряженном задачи на собственные значения для системы слабо сингулярных интегральных уравнений с помощью метода коллокации. Эффективность метода подтверждается результатами численных экспериментов.

Ключевые слова: обратные спектральные задачи, метод коллокации

Summary

We present new method for calculation of dielectric constants of optical fibers using propagation constants measurements. Our numerical algorithm is based on approximate solution of a nonlinear nonselfadjoint eigenvalue problem for a system of weakly singular integral equations by collocation method. Effectiveness of the method is confirmed by the results of numerical experiments.

Key words: inverse spectral problems, collocation method.

Введение

Разработка неразрушающих материал методов восстановления диэлектрической проницаемости привлекает большое внимание исследователей в последние годы (см., напр., [1], [2] и цитированную там литературу). Впервые задачи восстановления диэлектрической проницаемости по измерениям постоянных распространения были исследованы для закрытых прямоугольных волноводов [3]. Для открытых диэлектрических волноводов произвольного поперечного сечения [4] такие задачи могут быть сформулированы в виде обратных спектральных задач для интегральных операторов [5]. Методом интегральных уравнений хорошо изучена математическая модель оптического волновода с кусочно-постоянным показателем преломления [6]— [8]. В настоящей работе на ее основе формулируются обратные спектральные задачи восстановления диэлектрической проницаемости сердцевина и оболочки волновода. Для решения этих задач предлагаются новые численные алгоритмы, основанные на решении нелинейной несамосопряженной задачи на собственные значения для системы слабо сингулярных интегральных уравнений методом сплайн-коллокации нулевого порядка с подобластями. Для демонстрации практической эффективности

¹⁾Работа выполнена за счет средств субсидии, выделенной Казанскому федеральному университету для выполнения государственного задания в сфере научной деятельности. Публикация осуществлена при финансовой поддержке РФФИ и Правительства Республики Татарстан, проект № 12-01-97012-р_поволжье_а.

метода приводятся результаты численных экспериментов, приближенные решения сравниваются с известным точным решением для волновода кругового сечения.

1. Постановка задачи

Пусть цилиндрический диэлектрический волновод является бесконечно длинным и находится в неограниченном однородном пространстве. Будем считать, что образующая цилиндра параллельна оси x_3 декартовой системы координат. Пусть область поперечного сечения сердцевины волновода Ω_i ограничена дважды непрерывно дифференцируемым контуром γ . Пусть $\Omega_e = \mathbb{R}^2 \setminus \overline{\Omega_i}$ — неограниченная область оболочки. Пусть диэлектрическая проницаемость ε является кусочно-постоянной функцией, которая равна ε_{∞} в области Ω_e и равна $\varepsilon_+ > \varepsilon_{\infty}$ в области Ω_i . Задачи теории оптических волноводов [4] формулируются на основе однородной системы уравнений Максвелла

$$\operatorname{rot}\mathcal{E} = -\mu_0 \frac{\partial \mathcal{H}}{\partial t}, \quad \operatorname{rot}\mathcal{H} = \varepsilon_0 \varepsilon \frac{\partial \mathcal{E}}{\partial t}.$$
(1)

Здесь \mathcal{E} и \mathcal{H} — векторы напряженности электрического и магнитного поля; ε_0 и μ_0 — электрическая и магнитная постоянные. Нетривиальные решения уравнений (1), имеющие вид

$$\begin{bmatrix} \mathcal{E} \\ \mathcal{H} \end{bmatrix} (x, x_3, t) = \operatorname{Re} \left(\begin{bmatrix} \mathrm{E} \\ \mathrm{H} \end{bmatrix} (x) e^{i(\beta x_3 - \omega t)} \right),$$
(2)

называются собственными волнами волновода. Здесь $\omega > 0$ — частота электромагнитных колебаний, β — постоянная распространения, Е и Н — комплексные амплитуды векторов \mathcal{E} и \mathcal{H} , $x = (x_1, x_2)$.

В прямых спектральных задачах диэлектрическая проницаемость ε известна. Необходимо найти такие продольные волновые числа $k = \omega \sqrt{\varepsilon_0 \mu_0}$ и постоянные распространения β , при которых существуют собственные волны. Собственные волны должны удовлетворять условию сопряжения на границе γ и условию излучения на бесконечности. В обратных спектральных задачах необходимо восстановить неизвестную диэлектрическую проницаемость ε по данным о собственных волнах, существующих при некоторых k и β . Главный вопрос в том, какой информации о спектре достаточно для единственного и устойчивого восстановления диэлектрической проницаемости.

2. Решение прямой задачи

В скалярном приближении слабонаправляющего волновода прямая задача сводится к отысканию таких значений поперечных волновых чисел $\chi = \sqrt{k^2 \varepsilon_+ - \beta^2}$ и $\sigma = \sqrt{\beta^2 - k^2 \varepsilon_\infty} > 0$, при которых существуют ненулевые классические решения *u* следующей задачи [6]:

$$\Delta u + \chi^2 u = 0, \quad x \in \Omega_i, \tag{3}$$

$$\Delta u - \sigma^2 u = 0, \quad x \in \Omega_e, \tag{4}$$

$$u^+ = u^-, \quad \frac{\partial u^+}{\partial \nu} = \frac{\partial u^-}{\partial \nu}, \quad x \in \gamma,$$
 (5)

$$\begin{bmatrix} E \\ H \end{bmatrix} = e^{-\sigma r} O\left(\frac{1}{\sqrt{r}}\right), \quad r = |x| \to \infty, \tag{6}$$

где $\partial u/\partial \nu$ — производная по нормали к контуру γ , внешней относительно области Ω_i . Методом потенциалов простого слоя задача (3) — (6) сведена [6] к системе интегральных уравнений. Путем аппроксимации интегрального оператора методом сплайн-коллокации нулевого порядка с подобластями в [8] построена конечномерная нелинейная спектральная задача вида $A_n(\chi)w_n = 0$, где n — количество точек коллокации, а параметр σ фиксирован. Для ее решения мы используем метод обратных итераций с невязкой [9]. На рис. 1 слева представлены результаты численных экспериментов. Непрерывными линиями показано точное решения, кружками — приближенное. Дисперсионная кривая фундаментальной волны отмечена красным цветом (первая кривая снизу слева).

Рис. 1: Дисперсионные кривые для собственных волн волновода кругового поперечного сечения (слева). График функции $\varepsilon_+ = \varepsilon_+(\beta^2)$ для фундаментальной волны и результаты численного восстановления проницаемости сердцевины волновода (справа).

3. Решение обратных спектральных задач

В этом разделе предлагаются алгоритмы приближенного решения обратных спектральных задач. Они основаны на использовании предварительно вычисленных для σ из соответствующего интервала характеристических значениях $\chi(\sigma)$ оператор-функции $A_n(\chi)$.

Пусть задан контур γ поперечного сечения волновода и известна диэлектрическая проницаемость ε_{∞} окружающей среды. Предположим, что для некоторой частоты электромагнитных колебаний ω измерена постоянная распространения β фундаментальной волны волновода. Необходимо найти диэлектрическую проницаемость сердцевины ε_+ . После того как решена прямая спектральная задача, решение обратной спектральной задачи может быть найдено следующим образом. Сначала по β , ω и ε_{∞} вычисляется число $\sigma = \sqrt{\beta^2 - k^2 \varepsilon_{\infty}}$. Затем находится значение поперечного волнового числа $\chi(\sigma)$ для фундаментальной волны, отвечающего этому σ . Это число рассчитывается путем интерполяции функции $\chi(\sigma)$ для фундаментальной волны по точкам, которые были получены при решении прямой спектральной задачи с помощью метода сплайн-коллокации. И наконец, искомая диэлектрическая проницаемость вычисляется по формуле $\varepsilon_{+} = (\chi^{2} + \beta^{2})/k^{2}$. В наших расчетах по аналогии с [2] мы ввели случайный шум в постоянную распространения: $\tilde{\beta} = \beta(1 + p\alpha)$. Здесь $\alpha \in (-1, 1)$ генерируются случайным образом, p = 0.05 уровень шума. На рис. 1 справа представлены результаты численных экспериментов, проведенных описанным методом для волновода кругового поперечного сечения. Кружочком показано численное решение при точно заданном β , точками — приближенные решения для возмущенных β . Видно, что метод устойчив к возмущениям постоянной распространения. Таким образом, для того чтобы однозначно и устойчиво восстановить диэлектрическую проницаемость ε_+ сердцевины волновода, достаточно измерить постоянную распространения β его фундаментальной волны лишь на одной частоте.

Пусть теперь диэлектрическая проницаемость ε_+ сердцевины волновода известна. Предположим, что для некоторой частоты электромагнитных колебаний ω измерена постоянная распространения β фундаментальной волны волновода. Необходимо найти диэлектрическую проницаемость ε_{∞} оболочки. Решение этой обратной спектральной задачи может быть найдено следующим образом. Прежде всего, по известным β , ω и ε_+ вычисляется $\chi = \sqrt{k^2 \varepsilon_+ - \beta^2}$. С помощью метода сплайн-коллокации для фундаментальной волны вычисляется значение $\sigma(\chi)$, отвечающего этому χ , и наконец, по формуле $\varepsilon_{\infty} = (\beta^2 - \sigma^2)/k^2$ находится искомая диэлектрическая проницаемость оболочки волновода. На рис. 2 слева представлены результаты численных экспериментов, проведенных описанным методом для волновода кругового поперечного сечения. Как и в предыдущей серии экспериментов, кружочком показано численное решение задачи при точно заданном β , точками — приближенные решения для возмущенных $\tilde{\beta}$. Видно, что приближенные решения даже для случайно возмущенных $\tilde{\beta}$ с уровнем шума 5% были стабильными. Следовательно, для однозначного и устойчивого восстановления диэлектрической проницаемости ε_{∞} оболочки волновода тоже достаточно измерить постоянную распространения β фундаментальной волны только для одной частоты ω .

Рис. 2: График функции $\varepsilon_{\infty} = \varepsilon_{\infty}(\beta^2)$ для фундаментальной волны и результаты численного восстановления проницаемости оболочки волновода (слева). Результаты численных экспериментов по одновременному восстановлению диэлектрической проницаемости сердцевины и оболочки (справа).

Рассмотрим теперь более общий случай. Пусть необходимо одновременно найти и диэлектрическую проницаемость ε_{∞} его оболочки. Предположим, что для двух разных частот электромагнитных колебаний ω измерены постоянные распространения β фундаментальной волны волновода. Для каждого фиксированного значения продольного волнового числа k и постоянной распространения β решение прямой спектральной задачи (3) – (6) для фундаментальной волны определяет неявную функцию ε_{+} переменной ε_{∞} . На рис. 2 справа непрерывными линиями показаны графики функции $\varepsilon_{+} = \varepsilon_{+}(\varepsilon_{\infty})$ для двух пар фиксированных значений параметров β и k. Пересечение этих кривых однозначно определяет значения ε_{+} и ε_{∞} . Значит, после того как решена прямая спектральной задача, и найдена дисперсионная кривая для фундаментальной волны, решение обратной спектральной задачи может быть получено как решение системы нелинейных уравнений:

$$\begin{cases} \chi^2(\beta_1^2 - k_1^2\varepsilon_\infty) = k_1^2\varepsilon_+ - \beta_1^2, \\ \chi^2(\beta_2^2 - k_2^2\varepsilon_\infty) = k_2^2\varepsilon_+ - \beta_2^2. \end{cases}$$

Здесь k_1 и k_2 — заданные различные значения продольного волнового числа, β_1 и β_2 — соответствующие им измеренные постоянные распространения, χ — функция переменной ε_{∞} при фиксированных k_j и β_j , j = 1, 2. Приближенное решение, полученное методом коллокации, отмечено на 2 справа красным кружком для точных значений постоянной распространения β . Как было описано выше, мы ввели случайный шум в постоянную распространения. Приближенные решения для возмущенных β являются пересечениями пунктирных линий. Мы видим, что приближенные решения для случайно возмущенных β принадлежат красному ромбу и устойчивы. Поэтому, для однозначного и устойчивого одновременного восстановления диэлектрической проницаемости волновода ε_+ и диэлектрической проницаемости окружающей среды ε_{∞} достаточно измерить постоянные распространения β фундаментальной волны только для двух различных частот ω .

4. Заключение.

В этой работе мы показали, что предложенные нами обратные спектральные задачи корректно поставлены. Важно отметить, что никакой информации о конкретных значениях собственных функций не требуется. Для решения этих обратных задач достаточно знать, что возбуждается именно фундаментальная волна, а затем измерить ее постоянную распространения для одной или для двух частот.

Такой подход соответствует практике физических экспериментов, потому что, как правило, для практических целей возбуждается именно фундаментальная волна [4]. Более того, для достаточно широкого интервала частот может возбуждаться только фундаментальная волна [6].

Для приближенного решения обратных задач мы предлагаем сначала решить прямую спектральную задачу поиска поперечных волновых чисел и построить дисперсионную кривую для фундаментальной волны волновода. Эти расчеты делаются достаточно точно методом коллокации. Затем можно однозначно и устойчиво восстановить диэлектрическую проницаемость сердцевины волновода и его оболочки с помощью предложенных обратных алгоритмов.

ЛИТЕРАТУРА

- 1. Havrilla M., Bogle A., Hyde IV, M., Rothwell E. EM material characterization of conductor backed media using a NDE microstrip probe // Studies in Applied Electromagnetics and Mechanics. 2014. V. 38, № 2. P. 210–218.
- Beilina L., Klibanov M.V. A new approximate mathematical model for global convergence for a coefficient inverse problem with backscattering data // Inverse and Ill-Posed Problems. – 2012. – V. 20. – P. 513– 565.
- 3. Janezic M.D., Jargon J.A. Complex permittivity determination from propagation constant measurements // IEEE Microwave and Guided Wave Letters. – 1999. – V. 9, № 2. – P. 76–78.
- 4. Snyder A.W., Love J.D. Optical Waveguide Theory. Chapman and Hall, London, 1983.
- 5. Chu M.T., Golub G.H. Inverce Eigenvalue Problems: Theory, Algorithms, and Applications. Oxford University Press, 2005.
- 6. Karchevskii E.M. Analysis of the eigenmode spectra of dielectric waveguides // Computational Mathematics and Mathematical Physics. 1999. V. 39, № 9. P. 1493–1498.
- 7. Karchevskii E.M. The fundamental wave problem for cylindrical dielectric waveguides // Differential Equations. 2000. V. 36, № 7. P. 1109–1111.
- Spiridonov A.O., Karchevskiy E.M. Projection methods for computation of spectral characteristics of weakly guiding optical waveguides // Proceedings of the International Conference Days on Diffraction 2013, DD 2013. – 2013. – P. 131–135.
- 9. Neumaier A. Residual inverse iteration for the nonlinear eigenvalue problem //SIAM J. Numer. Anal. 1985. V. 22, № 5. P. 914–923.

REFERENCES

 Havrilla M., Bogle A., Hyde IV, M., Rothwell E. EM material characterization of conductor backed media using a NDE microstrip probe // Studies in Applied Electromagnetics and Mechanics. – 2014. – V. 38, № 2. – P. 210–218.

- Beilina L., Klibanov M.V. A new approximate mathematical model for global convergence for a coefficient inverse problem with backscattering data // Inverse and Ill-Posed Problems. – 2012. – V. 20. – P. 513– 565.
- 3. Janezic M.D., Jargon J.A. Complex permittivity determination from propagation constant measurements // IEEE Microwave and Guided Wave Letters. – 1999. – V. 9, № 2. – P. 76–78.
- 4. Snyder A.W., Love J.D. Optical Waveguide Theory. Chapman and Hall, London, 1983.
- 5. Chu M.T., Golub G.H. Inverce Eigenvalue Problems: Theory, Algorithms, and Applications. Oxford University Press, 2005.
- 6. Karchevskii E.M. Analysis of the eigenmode spectra of dielectric waveguides // Computational Mathematics and Mathematical Physics. 1999. V. 39, № 9. P. 1493–1498.
- 7. Karchevskii E.M. The fundamental wave problem for cylindrical dielectric waveguides // Differential Equations. 2000. V. 36, № 7. P. 1109–1111.
- Spiridonov A.O., Karchevskiy E.M. Projection methods for computation of spectral characteristics of weakly guiding optical waveguides // Proceedings of the International Conference Days on Diffraction 2013, DD 2013. – 2013. – P. 131–135.
- 9. Neumaier A. Residual inverse iteration for the nonlinear eigenvalue problem //SIAM J. Numer. Anal. 1985. V. 22, № 5. P. 914–923.