УДК 534.2.532

РАЗВИТИЕ КАВИТАЦИОННОЙ КАВЕРНЫ ПРИ НЕСТАЦИОНАРНОМ ОБТЕКАНИИ ПЛАСТИНЫ¹⁾

425

В.А. КОРОБИЦЫН

Томский государственный университет, г. Томск E-mail: kva635133@mail2000.ru

DEVELOPMENT OF CAVITATION BUBBLE AT UNSTEADY FLOW PLATE

V.A. Korobitsyn

Tomsk State University, Tomsk

Аннотация

На основе модели газовой динамики в переменных Лагранжа численно исследован начальный этап образования кавитационной каверны создаваемой нестационарным обтеканием неподвижной полубесконечной пластины. Приводятся результаты численного расчета формирования кавитационной каверны.

Ключевые слова: нестационарное обтекание пластины, газовая каверна, формирование плоской каверны.

Summary

Within the model of gas dynamics in Lagrange variables numerically investigated the initial stage of formation of the cavitation cavity. Cavity occurs at unsteady flow fixed semi-infinite plate. The results of numerical calculation of the formation of cavitation cavity.

Key words: flow along the plate, gas cavity, forming a gaz cavity.

Расматривается нестационарное обтекание неподвижной полубесконечной пластины, падающим с постоянной скоростью потоком газа, с первоначально плоской свободной поверхностью. Вектор скорости газа перпендикулярен пластине. Под свободной поверхностью находится не взаимодействующая среда с постоянным давлением. Этот процесс описывается классом разрывных решений уравнений идеальной газовой динамики. Разрывы возникают при внезапном натекании стационарного на бесконечности потока газа на плоскую преграду в виде неподвижной полубесконечной пластины. В начальном движении в некоторой окрестности пластины развивается одномерное течение в форме распада разрыва, аналогичное течению перед одномерным поршнем, вдвигаемом в газ.

Дифференциально-разностную схему нестационарных уравнений газовой динамики в лагранжевых переменных в декартовых прямоугольных координатах (x_1, x_2) на шахматной сетке узлов ω_h и ячеек Ω_h запишем в виде [1]

$$d\rho/dt = -\rho DIV\mathbf{W},\tag{1}$$

$$\rho d\mathbf{W}/dt = -\mathbf{GRAD}p,\tag{2}$$

$$\rho d\varepsilon/dt = -pDIV\mathbf{W}\,,\tag{3}$$

$$dx_i/dt = W_i,\tag{4}$$

¹⁾Результаты были получены в рамках выполнения государственного задания Минобрнауки России (№ 5.628.2014/К)

где t — непрерывное время, ρ — плотность, p — давление, ε — внутренняя энергия, $p, \rho, \varepsilon \in H_{\Omega}$. Координаты x_1, x_2 и вектор скорости **W** материальной частицы определим в узлах, $x_i \in H_{\omega}, \mathbf{W} \in \mathbf{H}_{\omega}$. Масса ячейки и узла величина постоянная во времени, плотность $\rho = M/V$, V — рассчитываемая площадь, соответственно ячейки и узла. Производная $d\mathbf{W}/dt$ определяет ускорение частицы газа и, в силу постоянного характера ортов системы, просто разделяется на компоненты.

Рис. 1: Сетка узлов 89 × 89, time=7.0e-03

Дополним систему уравнений граничными и начальными условиями. Начальные значения координат определяют сетку узлов и ячеек, начальные значения вектора скорости пластины $\mathbf{W} = \{0, W_0\}, W_0 = 0$ задают постоянно действующее возмущение, последствия которого подлежат численному моделированию.

На оси симметрии (левая граница) выполняются условия непротекания. На правой границе моделируем условия на бесконечности. Свободную границу моделируем плоскими ячейками примыкающими к ячейкам граничащими со свободной поверхностью. В плоских ячейках давление принимаем равным давлению на свободной границе. При этом в разностной схеме выполняется непрерывность давления в окрестности свободной границы.

Дискретная система уравнения дополняются уравнением состояния, получившим распространение при математическом моделировании ударно-волновых явлений в водной среде [2]. Ширина половины пластины 0.071.

Отметим, что в численном решении одновременно присутствуют области стационарного течения, существенно двумерного течения, и область одномерного течения в окрестности левой границы — центра симметрии. Эта область остается одномерным течением до момента прихода волны возмущения от пра-

Рис. 2: Сетка узлов 30 × 20, time=7.0e-03

вого конца пластины — особой точки. Сравнение поведения области одномерного численного течения с аналитическим решением [3] задачи о поршне, вдвигаемом в идеальный газ с постоянной скоростью, по-казывает хорошее согласование.

На рис. 1 приведена форма дискретной области для момента времени t = 7.0e - 03. Свободная поверхность искажена всплеском, который нависает над пластиной. Под пластиной участок одномерного решения уже потерял одномерность от пришедшей волны от правого края пластинки.

На следующем рис. 2 приведен фрагмент сетки 30 × 20 узлов вниз от пластины и вправо от левой границы – оси, который демонстрирует обтекание особой точки пластины.

ЛИТЕРАТУРА

- 1. Демин А.В., Коробицын В.А., Мазуренко А.И., Хе А.И. О расчете на двумерных лагранжевых сетках течений вязкой несжимаемой жидкости со свободной поверхностью // Журнал вычисл. матем. и матем. физ. – 1988. – Т. 28, № 11. – С. 77–101.
- 2. Ищенко А.Н., Афанасьева С.А., Буркин В.В. и др. Расчетно-экспериментальный метод исследования высокоскоростного исследования тел с преградами. — Томск: Издательство НТЛ, 2013.
- 3. **Рождественский Б.Л., Яненко Н.Н.** Системы квазилинейных уравнений и их приложения к газовой динамике. М.: Гл. ред. физ.-мат. лит., 1978.

REFERENCES

- 1. Demin A.V., Korobitsyn V.A., Mazurenko A.I., He A.I. Calculation of the flows of a viscous incompressible liquid with a free surface on two-dimensional Lagrangian nets // USSR Computational Mathematics and Mathematical Physics. 1988. V. 28, № 6. P. 81–87.
- 2. Ishchenko A.N., Afanasiev S.A., Burkin V.V. et al. Calculation-experimental method for studying high-speed research bodies with obstacles [Raschetno-eksperimental'nyi metod issledovanija vysokoskorostnogo issledovanija tel s pregradami]. Tomsk, 2013. (in Russian)
- 3. **Rozhdestvenskii B.L., Yanenko N.N.** Systems of quasilinear equations [Sistemy kvazilineinykh uravnenii]. Moscow: Nauka, 1968. (in Russian)