КАЗАНСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ

Н.А. Корешков, М.Ф. Насрутдинов

СБОРНИК ЗАДАЧ ПО ТЕОРИИ ЧИСЕЛ

 ${
m Kaзahb}-2016$

Казанский (Приволжский) федеральный университет

Н.А. Корешков, М.Ф. Насрутдинов

СБОРНИК ЗАДАЧ ПО ТЕОРИИ ЧИСЕЛ

УЧЕБНО-МЕТОДИЧЕСКОЕ ПОСОБИЕ

Казань 2016 Печатается по решению учебно-методической комиссии Института математики и механики им. Н.И. Лобачевского от 10 декабря 2015 г. (протокол №3).

Научный редактор кандидат физико-математических наук, доцент Абызов А.Н.

Корешков Н.А., Насрутдинов М.Ф.

Сборник задач по теории чисел. Учебно-методическое пособие /Корешков Н.А., Насрутдинов М.Ф. – Казань: Казанский университет, 2016.-24 с.

Учебно-методическое пособие предназначено для студентов младших курсов Института математики и механики им. Н.И. Лобачевского для проведения практических занятий дисциплины "Теория чисел".

- © Корешков Н.А., Насрутдинов М.Ф. 2016
- © Казанский университет, 2016

Оглавление

1	Деление с остатком	4
2	Функции [] и { }	6
3	Некоторые теоретико-числовые функции	8
4	Умножение Дирихле и функция Эйлера	10
5	Цепные дроби	12
6	Теорема Эйлера и ее применение	14
7	Решение сравнений первой степени	15
8	Китайская теорема об остатках и системы сравнений первой	
	степени	16
9	Решение сравнений. Сравнения по примарному модулю	18
10	Дополнительные задачи	19
11	Квадратичные вычеты	20
12	Первообразные корни и индексы	22
ЛИ	ТЕРАТУРА	25

1 Деление с остатком

- 1.1. Найти наибольшее число, дающее при делении на 13 частное 17.
- **1.2.** Доказать, что остаток при делении квадрата нечетного натурального числа на 8 равен 1.
- **1.3.** Доказать, что сумма квадратов двух последовательных натуральных чисел при делении на 4 дает остаток 1.
- **1.4.** Доказать, что если $a \equiv 1 \mod n$ и $b \equiv 1 \mod n$, то $ab \equiv 1 \mod n$.
- **1.5.** Доказать, что 3n+2 не может быть квадратом целого числа.
- **1.6.** Доказать, что среди 5 последовательных натуральных чисел одно делится на 5.
- **1.7.** Доказать, что сумма 2n+1 последовательных чисел делится на 2n+1.
- **1.8.** Доказать, что $5|m^5-m$.
- **1.9.** Доказать, что $6|m^3 + 5m$.
- **1.10.** Доказать, что 6|m(m+1)(2m+1).
- **1.11.** Доказать, что $9|4^n + 15n 1$ для любых положительных целых n.
- **1.12.** Доказать, что если m p|mn + pq, то m p|mq + np.
- **1.13.** Найти все натуральные n, для которых $n + 1|n^2 + 1$.
- **1.14.** Найти все целые $n \neq 3$, для которых $n 3|n^3 3$.
- **1.15.** Доказать, что если $7|m^2 + n^2$, то 7|m и 7|n.
- **1.16.** Доказать, что в пифагоровой тройке 1 один из катетов делится на 3.
- 1.17. Доказать, что в пифагоровой тройке одна из сторон делится на 5.
- **1.18.** Доказать, что простое число p > 5 при делении на 6 дает остаток 1 или 5.
- **1.19.** Доказать, что квадрат простого числа p>3 при делении на 24 дает остаток 1.
- **1.20.** Если трехзначное число делится на 37, то все числа полученные круговой перестановкой тоже делится на 37.
- **1.21.** Доказать, что сумма квадратов двух нечетных чисел не может быть квадратом целого числа.
- **1.22.** Доказать, что сумма четных степеней двух нечетных чисел не может быть кубом целого числа.
- **1.23.** Доказать, что 5-я степень любого натурального числа оканчивается на ту же самую цифру, что и само число.

¹Тройка положительных целых чисел a, b, c называется пифагоровой, если $a^2 + b^2 = c^2$

- **1.24.** Доказать, что
 - а) $a^{10} 9a + 8$ делится на 2,
 - б) $a^5 + 3a^3 12$ делится на 4,
 - в) $a^3 7a + 18$ делится на 6,
 - г) $a^7 a 56$ делится на 7,
 - д) $a^5 17a^3 + 24$ делится на 8,
 - е) $a^9 + 17a^3 18$ делится на 9.
- **1.25.** Доказать, что
 - а) разность четных степеней двух нечетных чисел делится на 4,
- б) сумма кубов двух последовательных нечетных чисел делится на 6,
 - в) разность квадратов двух нечетных чисел делится на 8,
 - г) сумма кубов трех последовательных целых чисел делится на 3.
- **1.26.** Доказать, что
 - а) 5ab делится на 45, если $a^6 + b^6$ делится на 3,
 - б) 4ab делится на 100, если $a^8 + b^8$ делится на 5,
 - в) 2ab делится на 98, если $a^4 + b^4$ делится на 7,
 - г) 3ab делится на 363, если $a^2 + b^2$ делится на 11.
- **1.27.** Доказать, что $n(n^2+1)(n^2+4)$ делится на 5 при любом целом n.
- **1.28.** Доказать, что целое число a не может быть квадратом целого числа, если число a-5 делится на 9.
- **1.29.** Доказать, что $\frac{n-5}{15}$ и $\frac{n-6}{24}$ не могут быть одновременно целыми числами.
- **1.30.** Доказать, что abc делится на 3, если $a^3 + b^3 + c^3$ делится на 9.
- **1.31.** Доказать, что $7^{n+2} + 8^{2n+1}$ делится на 3 при любом целом неотрицательном n.
- **1.32.** Доказать, что $5^{2n+1} \cdot 2^{n+2} + 3^{n+2} \cdot 2^{2n+1}$ делится на 19 при любом целом неотрицательном n.
- **1.33.** Доказать, что при любом натуральном n
 - а) $2^{n+2} + 2^{n+1} + 2^n$ делится на 14,
 - б) $7^{2n} 4^{2n}$ делится на 33,
 - в) $5^{2n+1} + 3^{n+2} \cdot 2^{n-1}$ делится на 19,
 - г) $12^{2n+1} + 11^{n+1}$ делится на 133.
- **1.34.** Найти все простые числа p, для которых числа p+10 и p+14 также простые.

- **1.35.** Доказать, что сумма квадратов трех простых чисел, бо́льших трех, есть число составное.
- **1.36.** Найти все натуральные n, для которых $8^n 1$ простое число.
- **1.37.** Доказать, что для любого натурального n число $32^n + 1$ является составным.
- **1.38.** Найти все наборы из пяти последовательных целых чисел, сумма которых есть число простое.
- **1.39.** Доказать, что натуральное число вида 6k-1 имеет простой делитель того же вида.
- **1.40.** Доказать, что существует бесконечно много простых чисел вида $6k-1,\ k\in\mathbb{N}.$
- **1.41.** Найти все простые числа p, для которых числа p+5 и p+11 также простые.
- 1.42. Доказать, что сумма квадратов двух нечетных простых чисел есть число составное.
- **1.43.** Найти все натуральные n, для которых
 - a) $3^n 1 \in P$,
 - б) $6^n 1 \in P$,
 - B) $12^n 1 \in P$,
 - Γ) $18^n 1 \in P$,

где P — множество простых чисел.

- **1.44.** При каких натуральных n число $n^4 + n^2 + 1$ является простым?
- **1.45.** Найти все тройки p, p+2, p+4 последовательных нечетных простых чисел.
- **1.46.** Найти все простые p, для которых $7p^2 + 8$ простое число.
- **1.47.** Для каких простых p число p+4 является квадратом целого числа?
- **1.48.** Найти все простые числа p, для которых 2p+1 является кубом целого числа.

2 Функции [] и { }

Целой частью вещественного числа называется наибольшее целое число, не превосходящее x. Обозначение [x] (читается "антье от x"). Дробной частью числа x называется число $\{x\} = x - [x]$.

Примеры.
$$[3.14] = 3$$
, $[-3.14] = -4$, $\{-3.14\} = 0.86$.

Теорема 2.1 Показатель, с которым простое число р входит в разложение n! равен

$$\left[\frac{n}{p}\right] + \left[\frac{n}{p^2}\right] + \dots \left[\frac{n}{p^k}\right] + \dots$$

При этом лишь конечное число слагаемых в сумме не равно нулю.

- 2.1. Найти целые и дробные части следующих чисел:
 - а) 3.14, б) -4.1,
 - B) $\sqrt{35}$, Γ) $\sqrt{30} + \sqrt[3]{10}$
- **2.2.** Построить графики функций $y = [x], y = \{x\}$
- **2.3.** Выразить [x + y] через целые и дробные части x, y
- **2.4.** Показать, что количество чисел кратных d, лежащих на отрезке [1, x]

равно $\left[\frac{x}{3}\right]$

- **2.5.** Сколькими нулями оканчивается число 2016!
- 2.6. Сколькими нулями оканчивается число 191!
- 2.7. С каким показателем число 6 входит в произведение 100!
- **2.8.** С каким показателем степени простое число p входит в $(p^n)!$
- **2.9.** Найти НОК всех натуральных чисел, не превышающих m.
- **2.10.** . Сколько натуральных n, не превосходящих 1000, не делится ни на 5, ни на 7?
- **2.11.** Решить уравнение $[x] = 1 + 2\{x\}$.
- **2.12.** Построить графики функций $f(x) = [2x 1], f(x) = \{2x 1\}.$
- 2.13. Сколько натуральных чисел, не превосходящих 100, не делится ни на 2, ни на 3, ни на 5.
- 2.14. Запишите каноническое разложение чисел
 - a) 14!,
- б) 16!,
- в) 18!,

д) 26!

- e) $\frac{20!}{10!10!}$, ж) $\frac{16!}{8!8!}$, з) $\frac{16!}{10!6!}$, и) $\frac{20!}{16!4!}$.
- 2.15. Решите уравнения
 - a) [x] = -3,
- 6) [2x] = 2,
- B) $[x^2 4x + 7] = 3$, r) $[3x^2 x] = x 1$,
- д) $\{x\} = [x+15],$ e) $[x] + 5 = 2\{x\},$
- $\mathbb{K}) \; \frac{x-1}{3} = \{x\}.$
- 2.16. Построить графики функций

a)
$$f(x) = [\sin x], f(x) = {\sin x},$$

6)
$$f(x) = [2\cos x - 3], f(x) = \{2\cos x - 3\},$$

B)
$$f(x) = [x^3 - 1], f(x) = \{x^3 - 1\}.$$

2.17. Решить неравенства

a)
$$[1-x^2] > -4$$
, Γ $\{1-x^2\} > 0, 5$,

б)
$$[\sin 2x - 4] \le 3, 5$$
, д) $\{\sin 2x - 4\} \le 0, 5$,

B)
$$[\log_5 x] \ge 0$$
, e) $\{\log_5 x\} \ge 0, 2$.

2.18. Докажите

а)
$$[x] + [x + \frac{1}{k}] + [x + \frac{2}{k}] + \dots + [x + \frac{k-1}{k}] = [kx]$$
, где $x \in \mathbb{R}, k \in \mathbb{N}$,

б)
$$[\frac{m}{n}]+[2\frac{m}{n}]+\cdots+[(n-1)\frac{m}{n}]=\frac{(m-1)(n-1)}{2},$$
 где $m,n\in\mathbb{N},$ $(m,n)=1,$

В)
$$\sum_{n=1}^{q/2} [\frac{np}{q}] + \sum_{m=1}^{p/2} [\frac{mq}{p}] = \frac{p-1}{2} \cdot \frac{q-1}{2}$$
, где $m,n \in \mathbb{N},\ p,q \in P \setminus 2,\ p \neq q$.

3 Некоторые теоретико-числовые функции

Функция $\theta: \mathbb{N} \to \mathbb{C}$ называется мультипликативной, если (1) $\theta(a) \neq 0$ хотя бы для одного натурального a (2) для любых взаимно простых чисел a и b имеем $\theta(ab) = \theta(a)\theta(b)$.

Функцией Мебиуса называется функция $\mu: \mathbb{N} \to \{-1,0,1\},$ определяемая условиями

 Φ ункция Эйлера $\varphi(a)$ определяется для положительных чисел и равна количеству чисел ряда $0,1,\ldots,a-1$ взаимно простых с a. По определению $\varphi(1)=1$.

Для целого числа a будем обозначать также через $\tau(a)$ число делителей a, через S(a) сумму делителей a.

3.1. Какие из следующих функций f(x) мультипликативны:

1. $f(x) = x^s$, где s любое вещественное (или комплексное) число;

$$2. \ f(x) = \sin(x);$$

$$3. \ f(x) = \lg(x).$$

В следующих задачах a – целое положительное число и a = $p_1^{\alpha_1}p_2^{\alpha_2}\dots p_n^{\alpha_n}$ его каноническое разложение на простые множители.

3.2. Пусть $\theta(x)$ – мультипликативная функция. Доказать, что

$$\sum_{d|a} \theta(d) = (1 + \theta(p_1) + \ldots + \theta(p_1^{\alpha_1})) \dots (1 + \theta(p_n) + \ldots + \theta(p_n^{\alpha_n}))$$

- **3.3.** Пусть $\theta(a)$ мультипликативная функция. Доказать, что $\theta_1(a) =$ $\sum_{d|a} heta(d)$ — мультипликативная функция.
- **3.4.** Доказать, что $\sum_{d|a} d^s = (1 + p_1^s + \ldots + p_1^{s\alpha_1}) \ldots (1 + p_n^s + \ldots + p_n^{s\alpha_n})$.
- **3.5.** Доказать, что число делителей a равно $\tau(a) = (1 + \alpha_1) \dots (1 + \alpha_n)$.
- **3.6.** Найти сумму делителей S(a) числа a.
- 3.7. Найти сумму и число делителей числа 500.
- **3.8.** Пусть θ мультипликативная функция. Доказать, что $\sum\limits_{d|a}\mu(d)\theta(d)=$

$$(1-\theta(p_1))\dots(1-\theta(p_n))$$

- **3.9.** Найти $\varphi(a)$ и $\mu(a)$ для чисел от 1 до 15.
- **3.10.** Найти $\sum_{d|a} \mu(d) \varphi(d)$. **3.11.** Найти $\sum_{d|n} \mu(d)$.
- **3.12.** Найти $\sum_{d|n} \frac{\mu(d)}{d}$. (Применить теорему к мультипликативной функции 1/d
- **3.13.** Решить уравнения (S и τ функции из примеров 3.6 и 3.5)

 - а) $\tau(x)=2$, д) $\tau(5x)=\tau(7x)$, и) S(x)=x, б) $\tau(x)=11$, е) $\tau(2x)=\tau(11x)$, к) S(x)=x+1,
 - в) $\tau(x) = 13$, ж) $\tau(13x) = \tau(17x)$, л) S(x) = x + 2,
 - $\tau(x) = 17$, з) $\tau(3x) = \tau(37x)$, м) S(x) = x + 4.
- **3.14.** Найти натуральное число n, если $n = p^{\alpha}q^{\beta}$, r(n) = 6, S(n) = 28, p, q — простые.
- **3.15.** Найти натуральное число n, если n = 32pq и $S(n) = 3n, \ p, \ q$ простые.
- **3.16.** Найти наименьшее натуральное число n такое, что

a)
$$\tau(n) = 11$$
, 6) $\tau(n) = 22$, B) $\tau(n) = 13$, $\tau(n) = 39$.

- **3.17.** Найти все натуральные n, для которых $\tau(n) = 9$, S(n) = 91.
- **3.18.** Доказать, что

a)
$$\tau(1) + \tau(2) + \dots + \tau(n) = \left[\frac{n}{1}\right] + \left[\frac{n}{2}\right] + \dots + \left[\frac{n}{n}\right],$$

6)
$$S(1) + S(2) + \dots + S(n) = 1 \cdot \left[\frac{n}{1}\right] + 2\left[\frac{n}{2}\right] + \dots + n\left[\frac{n}{n}\right].$$

4 Умножение Дирихле и функция Эйлера

Пусть $f,g:\mathbb{N} \to \mathbb{C}$. Произведение Дирихле функций f и g определяется формулой

$$(f \circ g)(n) = \sum_{d|n} f(d)g(\frac{n}{d}).$$

- 4.1. Доказать, что произведение Дирихле ассоциативно.
- **4.2.** Определим функцию α равенствами $\alpha(1) = 1$ и $\alpha(n) = 0$ для n > 1. Пусть $f: \mathbb{N} \to \mathbb{C}$ произвольная функция. Доказать $f \circ \alpha = \alpha \circ f = f$.
- **4.3.** Определим функцию β равенствами $\beta(n)=1$ для всех $n\geq 1$. Пусть $f:\mathbb{N}\to\mathbb{C}$ произвольная функция. Доказать $f\circ\beta=\beta\circ f=\sum\limits_{d\mid n}f(d)$.
- **4.4.** Доказать, что $\beta \circ \mu = \mu \circ \beta = \alpha$.
- **4.5.** Формула обращения Мебиуса. Пусть $f: \mathbb{N} \to \mathbb{C}$ произвольная функция. Определим $F(n) = \sum\limits_{d|n} f(d)$. Доказать, что

$$f(n) = \sum_{d|n} \mu(d) F(\frac{n}{d}).$$

4.6. Доказать, что $\sum\limits_{d|n} \varphi(d) = n$ (Гаусс).

(Рассмотреть числа $1/n, 2/n, \ldots, n/n$, сократив числители и знаменатели, выяснить что означает количество чисел со знаменателем d.)

4.7. Пусть $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_l^{\alpha_l}$ каноническое разложение числа n . Доказать, что

$$\varphi(n) = n \left(1 - \frac{1}{p_1}\right) \left(1 - \frac{1}{p_2}\right) \dots \left(1 - \frac{1}{p_l}\right).$$

- **4.8.** Доказать, что $\varphi(mn) = \varphi(m)\varphi(n)\frac{d}{\varphi(d)}$, где d = (m,n).
- **4.9.** Найти все m, для которых $\varphi(m) = 4$.
- **4.10.** Вычислить а) $\varphi(\varphi(12))$, б) $\varphi(\varphi(20))$, в) $\varphi(\varphi(14))$.

4.11. Решить уравнения

a)
$$\varphi(x) = \frac{2x}{3}$$
, $\varphi(2x) = \varphi(5x)$, $\varphi(x) = 3$, $\varphi(x) = 3$,

б)
$$\varphi(x) = \frac{4x}{11}$$
, д) $\varphi(3x) = \varphi(5x)$, з) $\varphi(x) = 6$,

в)
$$\varphi(x) = \frac{x}{6}$$
, e) $\varphi(13x) = \varphi(17x)$, и) $\varphi(x) = 10$.

- 4.12. Найти количество натуральных чисел, не превосходящих 1000, и взаимно простых с 77.
- 4.13. Найти количество натуральных чисел, не превосходящих 875, и взаимно простых с 175.
- **4.14.** Найти количество простых чисел, не превосходящих $2^{30}-1$, и взаимно простых с $2^{10} - 1$.

4.15. Решить уравнения

a)
$$\varphi(x) = r(x)$$
,

B)
$$\varphi(3x+1) = \varphi(6x+2)$$
,

6)
$$\varphi(6x-3) = \varphi(2x-1)$$
, $\varphi(3x-1) = \varphi(9x-3)$.

$$\Gamma) \varphi(3x-1) = \varphi(9x-3).$$

4.16. Вычислить
$$\sum_{k=0}^{\infty} \frac{\varphi(p^k)}{p^{ks}}, \ s \in \mathbb{R}, \ s > 1.$$

4.17. Доказать, что

a)
$$\varphi(4n) = 2\varphi(2n)$$
,

$$\Gamma$$
) $\varphi(n) + \tau(n) = S(n) \Leftrightarrow n \in P$,

6)
$$\varphi(4n+2) = \varphi(2n+1)$$

д)
$$\varphi(n) + S(n) = nr(n) \Leftrightarrow n \in P$$
,

$$B) \ a \mid b \Rightarrow \varphi(a) \mid \varphi(b),$$

б)
$$\varphi(4n+2)=\varphi(2n+1),$$
 д) $\varphi(n)+S(n)=nr(n)\Leftrightarrow n\in P,$ в) $a\mid b\Rightarrow \varphi(a)\mid \varphi(b),$ е) $p,2p+1\in P\Rightarrow \varphi(4p+2)=\varphi(4p)+2.$

4.18. Доказать, что

a)
$$\sum_{k=1}^{n} \varphi(k) \left[\frac{n}{k} \right] = \frac{n(n+1)}{2}$$
, B) $\sum_{k=1}^{n} \left[\frac{1}{(n,k)} \right] = \varphi(n)$,

B)
$$\sum_{k=1}^{n} \left[\frac{1}{(n,k)} \right] = \varphi(n),$$

б)
$$\sum_{d|n} \tau(d)\varphi(\frac{n}{d}) = S(n),$$

6)
$$\sum_{d|n} \tau(d)\varphi(\frac{n}{d}) = S(n),$$
 Γ) $\sum_{k=1}^{n} (n,k) = \sum_{d|n} d\varphi(\frac{n}{d}).$

Здесь τ и S –функции из задач 3.5 и 3.6.

4.19. Решить уравнения

a)
$$\mu(5x) = \mu(3x), x \in [5, 25],$$

6)
$$\mu(2x) = \mu(7x), x \in [10, 30].$$

4.20. Вычислить

a)
$$\sum_{d|n} \mu(d)d^k$$
, 6) $\sum_{d|n} \frac{\mu(d)}{\varphi(d)}$, B) $\sum_{d|n} \frac{\mu^2(d)}{\varphi^2(d)}$,

$$\Gamma$$
) $\sum_{d|n} \mu(d)r(d)$, д) $\sum_{d|n} \mu(d)r^3(d)$, e) $\sum_{d|n} \frac{\mu(\frac{n}{d})d}{\varphi(d)}$.

5 Цепные дроби

Конечной цепной дробью называется выражение

$$\delta_n = q_1 + \frac{1}{q_2 + \frac{1}{q_3 + \frac{1}{q_{n-1} + \frac{1}{q_n}}}},$$

где $q_1 \geq 0, \ q_i > 0$ при i > 0 и $q_n > 1$. Будем сокращенно записывать цепную дробь в виде $< q_1, q_2, \ldots, q_n >$

Теорема 5.1 Всякое рациональное число $\frac{a}{b} > 0$ разлагается в конечную цепную дробь. При этом q_i неполные частные в алгоритме Евклида вычисления (a,b).

Пусть $a=bq_1+r_2,\ b=r_2q_2+r_3,\ldots,\ r_{n-1}=r_nq_n$. Тогда $\frac{a}{b}=\delta_n$. Приводя к общему знаменателю можно записать δ_s в виде обычной

дроби. Обозначим $\delta_s=\frac{P_s}{Q_s}$, где $P_0=1$, $Q_0=0$, $P_1=q_1$, $Q_1=1$. Тогда $P_s=q_sP_{s-1}+P_{s-2}$ и $Q_s=q_sQ_{s-1}+Q_{s-2}$; $(P_s,Q_s)=1$.

Значения P_s и Q_s удобно вычислять с помощью таблицы

q_s		q_1	q_2	 q_{n-1}	q_n
P_s	1	q_1	P_2	 P_{n-1}	a
Q_s	0	1	Q_2	 Q_{n-1}	b

Если
$$\alpha = \langle q_1, q_2, \dots, q_n \rangle$$
, то $|\alpha - \frac{P_s}{Q_s}| < \frac{1}{Q_s^2}$, при $s \leq n$.

Для любой бесконечной последовательности натуральных чисел q_0,q_1,\ldots существует $\alpha=\lim_{n\to\infty}\frac{P_n}{Q_n}$, причем α — иррациональное число. Данная последовательность $q_0,q_1,\ldots=q_0,\ldots,q_{s-1},(q_s,\ldots,q_r)$ периодична тогда и только тогда, когда α — квадратичная иррациональность.

5.1. Разложить в цепные дроби:

(a)
$$\frac{125}{92}$$
; (b) $\frac{127}{52}$, (c) 1,23.
5.2. Свернуть непрерывные дроби:

(a)
$$< 1, 1, 2, 1, 2, 1, 2 >$$
, (b) $< 0, 1, 2, 3, 4, 5 >$.

5.3. Следующие числа заменить дробями с возможно меньшими знаменателями так, чтобы погрешность не превосходила 10^{-4} :

(a)
$$\frac{1261}{881}$$
; (b) $\frac{587}{103}$.
5.4. Разложить в цепную дробь числа

а)
$$\sqrt{11}$$
, г) $\frac{1+\sqrt{5}}{2}$,
б) $1-2\sqrt{6}$, д) $\frac{7+2\sqrt{3}}{4}$,
в) $\frac{2+\sqrt{13}}{5}$, е) $\frac{2+\sqrt{11}}{2}$.

a)
$$(2,(1))$$
, Γ) $(1,5,2,(3))$,

б)
$$\langle 1, (1,2) \rangle$$
, д) $\langle -4, (1,3,1) \rangle$,

B)
$$\langle (2,1,1,4) \rangle$$
, e) $\langle -5,1,4,(10,5) \rangle$.

Теорема 5.2 Пусть d — натуральное число, не равное квадрату целого u

$$\sqrt{d} = \langle a_0; (a_1, \dots, a_k, 2a_0) \rangle$$

разложение в цепную дробь с наименьшим периодом. Тогда множество решений уравнения Пелля

$$x^2 - dy^2 = 1$$

в натуральных числах состоит из пар (P_n,Q_n) числителей и знаменателей подходящих дробей к \sqrt{d} с условием, что n+1 четно и делится на k+1. Определим целые положительные числа x_1, y_1 равенствами

$$x_1 + y_1 \sqrt{d} = \begin{cases} P_k + Q_k \sqrt{d}, & ecnu \ k \ нечетно, \\ (P_k + Q_k \sqrt{d})^2, & ecnu \ k \ четно. \end{cases}$$

Все решения уравнения Пелля в натуральных числах образуют последовательность (x_m, y_m) и получаются по формуле

$$x_m + y_m \sqrt{d} = (x_1 + y_1 \sqrt{d})^m, \quad m = 1, 2 \dots$$

- 5.6. Найти все целочисленные решения уравнений
 - a) $x^2 5y^2 = 1$, B) $x^2 41y^1 = 1$,
 - 6) $x^2 19y^2 = 1$, $r) x^2 13y^2 = 1$.

6 Теорема Эйлера и ее применение

Теорема 6.1 Чтобы $a^{\varphi(m)} \equiv 1 \mod m$, необходимо и достаточно, чтобы (a,m)=1.

- **6.1.** Доказать, что любое нечетное целое число не кратное 5, в 12-той степени оканчивается на 1.
- **6.2.** Доказать, что если (a,7)=1, то $7|a^{12}-1$.
- **6.3.** Доказать, что если (a,65)=(b,65)=1, то $65|a^{12}-b^{12}$.
- **6.4.** Пусть p простое число. Доказать, что число вида $a^{p-1}+p-1$, где $a\not\equiv 0\mod p$, является составным.
- **6.5.** Пусть p простое число. Доказать, что $(a+b)^p \equiv a^p + b^p \mod p$.
- **6.6.** Доказать, что наименьшее целое положительное x, удовлетворяющее сравнению $a^x \equiv 1 \mod m$, где (a,m) = 1, является делителем числа $\varphi(m)$.
- **6.7.** Доказать, что натуральное число m не делящееся ни на 2, ни на 3, ни на 5 является делителем $\varphi(m)$ -значного числа вида $11\dots 1$.
- **6.8.** Доказать, что если $\sum_{i=1}^n a_i \equiv 0 \mod 30$, то $\sum_{i=1}^n a_i^5 \equiv 0 \mod 30$.
- **6.9.** Доказать, что $p_1^{p_2-1}+p_2^{p_1-1}\equiv 1 \mod p_1p_2$, где p_1,p_2 -различные простые числа.
- **6.10.** Доказать, что если (a, m) = 1 и $\alpha_1 \equiv \alpha_2 \mod \varphi(m)$, то $a^{\alpha_1} \equiv a^{\alpha_2} \mod m$.
- 6.11. Найти остаток от деления
 - а) 5^{14} на 7, в) 5^{100} на 11, д) 15^{175} на 11,
 - б) 24^{16} на 7, г) 3^{100} на 16, е) 3^{20} на 28.
- 6.12. Найти две последние цифры десятичной записи числа
 - а) 2^{999} , в) 123^{2010} , д) 200^{100} ,
 - 6) 5^{2011} , r) 557^{2012} , e) 55^{150} .
- **6.13.** Для любого натурального n найти остаток от деления 5^{21^n} на 37.
- **6.14.** Найти две последние цифры десятичной записи числа $7^{7^{7^{-1}}}$, если в конструкции участвует 1001 семерка.

7 Решение сравнений первой степени

- **7.1.** Пусть m>0 фиксированное целое число, $a,b\in\mathbb{Z}$. Будем говорить, что a эквивалентно b $(a\sim b)$, если m|a-b. Показать, что это действительно отношение эквивалентности.
- **7.2.** Пусть m>0 фиксированное целое число. Обозначим через $[a]=\{x\in\mathbb{Z}|m|(a-x)\}$ класс эквивалентных элементов относительно введенного выше порядка. Показать, что
 - 1. $[a] + [b] := \{x + y | x \in [a], y \in [b]\} = [a + b].$
 - 2. $[a] \cdot [b] := \{xy | x \in [a], y \in [b]\} = [ab]$.
 - 3. Показать, что $Z_m = \{[0], [1], \dots, [m-1]\}$ кольцо относительно введенных операций.

Сравнение первой степени с одним неизвестным это сравнение вида

$$ax \equiv b \mod m.$$
 (1)

Теорема 7.1 (1) Если (a,m) = 1, то сравнение имеет единственное решение, которое находится по формуле

$$x \equiv a^{\varphi(m)-1}b \mod m$$

или по формуле

$$x \equiv (-1)^{n-1} P_{n-1} b \mod m,$$

где P_{n-1} числитель предпоследней подходящей дроби в разложении $\frac{m}{a}$ в цепную дробь.

(2) Если (a,m)=d, то сравнение имеет решение, только если d|b. При этом сравнение имеет d решений, которые находятся по формулам

$$x_k \equiv x_0 + k \frac{m}{d} \mod m,$$

 $k=1,2,\ldots,d-1$, а x_0 решение сравнения

$$\frac{a}{d}x_0 \equiv \frac{b}{d} \mod \frac{m}{d}.$$

- 7.3. Решить сравнения первой степени:
- (a) $29x \equiv 1 \mod 17$; (b) $21x + 5 \equiv 0 \mod 29$;
- (c) $6x \equiv 27 \mod 12$; (d) $8x \equiv 20 \mod 12$;
- (e) $(a^2+b^2)x\equiv a-b \mod ab,\ (a,b)=1;$ (f) $ax\equiv 1 \mod p,\ p$ -простое и $p\not|a.$
- 7.4. Решить в целых числах уравнения:
- (a) 5x + 4y = 3 (сводится к системе $5x \equiv 3 \mod 4$ и $4y \equiv 3 \mod 5$);
- (b) 17x + 13y = 1.
- **7.5.** На прямой 8x-13y+6=0 найти число целых точек, лежащих между прямыми x=-100 и x=100.
- **7.6.** Доказать, что внутри прямоугольника, ограниченного прямыми $x=-2,\ x=5$ и $y=-1,\ y=2,$ на прямой 3x-7y-1=0 не лежит ни одной целой точки.
- 7.7. Решить сравнение
 - a) $3x \equiv 1 \pmod{7}$, π $78x \equiv 102 \pmod{273}$,
 - 6) $100x \equiv 21 \pmod{23}$, e) $315x \equiv -10 \pmod{275}$,
 - B) $42x \equiv 33 \pmod{90}$, \times $76x \equiv 232 \pmod{220}$,
 - $\Gamma) \ 20x \equiv 12 \ (\text{mod } 48).$

8 Китайская теорема об остатках и системы сравнений первой степени

Пусть m_1, m_2, \ldots, m_k — попарно взаимные простые числа, то система

$$\begin{cases} x \equiv c_1 \mod m_1 \\ x \equiv c_2 \mod m_2 \\ & \dots \\ x \equiv c_k \mod m_k \end{cases}$$
 (2)

имеет решение, которое единственно по модулю $m = m_1 m_2 \dots m_k$.

Для решения системы необходимо найти $y_1, y_2, \dots, y_k,$ удовлетворяющие сравнениям $\frac{m}{m_j}y_j \equiv 1 \mod m_j.$ Тогда решение имеет вид

$$x = \sum_{j=1}^{k} \frac{m}{m_j} y_j c_j.$$

- 8.1. Решить следующие системы сравнений
- (1) $\begin{cases} x \equiv 2 \mod 5 \\ x \equiv 8 \mod 11 \end{cases}$; (2) $\begin{cases} 4x \equiv 3 \mod 7 \\ 5x \equiv 4 \mod 6 \end{cases}$; (3) $\begin{cases} 17x \equiv 7 \mod 2 \\ 2x \equiv 1 \mod 3 \end{cases}$; (4) $\begin{cases} 3x \equiv 5 \mod 7 \\ 2x \equiv 3 \mod 5 \end{cases}$. $3x \equiv 3 \mod 9$
- 8.2. Найти все натуральные числа, делящиеся на 5 и дающие при делении на 2, 3, 4 в остатке 1.
- 8.3. (Старинная французская задача). Женщина несла на рынок корзину яиц. Прохожий нечаянно толкнул корзину и разбил яйца. Желая возместить ущерб, он спросил сколько было яиц в корзине. "Точно не помню, — ответила женщина, — но когда я раскладывала яйца по 2,3,4,5,6яиц, то в корзине оставалось 1 яйцо, а когда по 7, то ничего не оставалось". Сколько было яиц?
- **8.4.** Найти все значения a, при которых имеет решение система

 $2x \equiv a \mod 4$ $\begin{cases} 3x \equiv 4 \mod 10 \end{cases}$

8.5. Найти хотя бы одно значение m, при котором не имеет решение

 $x \equiv 3 \mod 6$ $x \equiv 7 \mod m$

- **8.6.** Найти целые точки прямых 4x-7y=9, 2x+9y=15 и 5x-13y=12, лежащие на одном перпендикуляре к оси абсцисс.
- **8.7.** Решить сравнение с двумя неизвестными (a) $x + 2y \equiv 1 \mod 3$; (b) $2x - y \equiv 1 \mod 4$.

8.8. Решить системы сравнений (a) $\begin{cases} x + 3y \equiv 5 \mod 7 \\ 4x \equiv 5 \mod 7 \end{cases}$; (b) $\begin{cases} 9y \equiv 15 \mod 12 \\ 7x - 3y \equiv 1 \mod 12 \end{cases}$.

8.9. Решить систему сравнений

 $\begin{cases} x \equiv 3 \pmod{8}, \\ x \equiv 11 \pmod{20}, \\ x \equiv 1 \pmod{5}, \end{cases}$ 6) $\begin{cases} 5x \equiv 11 \pmod{18}, \\ 3x \equiv 9 \pmod{16}, \\ 8x \equiv 4 \pmod{25}, \end{cases}$ 8) $\begin{cases} 6x \equiv 2 \pmod{20}, \\ x \equiv -2 \pmod{5}, \\ 4x \equiv 11 \pmod{29}, \end{cases}$ 1) $\begin{cases} 6x \equiv -8 \pmod{15}, \\ 8x \equiv -4 \pmod{15}, \\ 4x \equiv 5 \pmod{7}. \end{cases}$ 1)

B)
$$\begin{cases} 6x \equiv 2 \pmod{20}, \\ x \equiv -2 \pmod{5}, \\ 4x \equiv 11 \pmod{29}, \end{cases}$$

$$6) \begin{cases} 5x \equiv 11 \pmod{18}, \\ 3x \equiv 9 \pmod{16}, \\ 8x \equiv 4 \pmod{25}, \end{cases}$$

$$\Gamma$$

$$\begin{cases}
6x \equiv -8 \pmod{15}, \\
8x \equiv -4 \pmod{12}, \\
4x \equiv 5 \pmod{7}.
\end{cases}$$

8.10. Для нечетного простого числа p решить систему сравнений первой степени

a)
$$\begin{cases} x \equiv 1 \pmod{(p-1)}, \\ x \equiv 2 \pmod{p}, \\ x \equiv 3 \pmod{(p+1)}, \end{cases}$$
 6)
$$\begin{cases} x \equiv p-2 \pmod{(p+1)}, \\ x \equiv p+2 \pmod{(p-1)}. \end{cases}$$

8.11. При каких целых a совместна система сравнений первой степени

a)
$$\begin{cases} x \equiv a \pmod{42}, \\ x \equiv 11 \pmod{70}, \end{cases}$$
 6)
$$\begin{cases} x \equiv a \pmod{28}, \\ x \equiv a^2 \pmod{77}. \end{cases}$$

9 Решение сравнений. Сравнения по примарному модулю.

Пусть $f(x) = a_0 x^n + a_1 x^{n-1} + \ldots + a_n$ многочлен с целыми коэффициентами. Рассмотрим сравнение

$$f(x) \equiv 0 \mod m.$$

Если m=p — простое число, то сравнение равносильно сравнению $r(x)\equiv 0\mod p$ степени не выше чем p-1, где r(x) остаток от деления многочлена f(x) на x^p-x .

Если $m=m_1m_2\dots m_n$, где m_i взаимно просты, то сравнение равносильно системе $f(x)\equiv 0\mod m_i,\ i=1,\dots,n$.

Если $m=p^n$. То решение сводится к решению сравнений вида $f(x)\equiv 0\mod p$.

Последовательно находим x_1, x_2, \dots, x_n следующим образом: x_1 – решение сравнения $f(x) \equiv 0 \mod p$, при $f'(x_1) \neq 0$ находим $x_{i+1} = x_i + p^i t$, где t решение сравнения $\frac{f(x_i)}{p^i} + t f'(x_i) \equiv 0 \mod p$.

Искомое x равно x_n .

9.1. Решить сравнения:

- (a) $x^2 + 2x + 2 \equiv 0 \mod 9$;
- (b) $9x^2 + 29x + 62 \equiv 0 \mod 64$;
- (c) $6x^3 + 27x^2 + 17x + 20 \equiv 0 \mod 30$;
- (d) $x^3 + 2x + 2 \equiv 0 \mod 125$;
- (e) $x^2 \equiv p \mod p^2$.

- **9.2.** Доказать, что сравнение $x^2 \equiv a \mod 4$, где (a,2) = 1, имеет решение тогда и только тогда, когда $a \equiv 1 \mod 4$. Найти все решения сравнения при $a \equiv 1 \mod 4$.
- **9.3.** Доказать, что сравнение $x^2 \equiv a \mod 8$, где (a,2) = 1, имеет решение тогда и только тогда, когда $a \equiv 1 \mod 8$. Найти все решения сравнения при $a \equiv 1 \mod 8$.
- **9.4.** Доказать, что сравнение $x^2 \equiv a \mod 2^k$, где (a,2) = 1 и k > 2, имеет решение тогда и только тогда, когда $a \equiv 1 \mod 8$. Доказать, что в этом случае существует ровно 4 решения.
- 9.5. Решить сравнение
 - a) $x^4 + 2x^3 + 8x + 9 \equiv 0 \pmod{35}$,
 - 6) $103x^{103} + 88x^{73} + 210x^{13} + 100 \equiv 0 \pmod{105}$,
 - B) $725x^{603} 507x^{407} 311x^{126} + 85 \equiv 0 \pmod{77}$,
 - г) $x^{p-1} + x^{p-2} + \dots + x + 1 \equiv 0 \pmod{p}$, где $p \in P$,
 - д) $x^{p-2} + x^{p-3} + \dots + x + 1 \equiv 0 \pmod{p}$, где $p \in P$,
 - е) $(p-1)x^{p-2}-(p-2)x^{p-3}+\cdots+3x^2+2x-1\equiv 0$ (p), где $p\in P$.
- 9.6. Решить сравнение
 - a) $x^3 + 2x + 2 \equiv 0 \pmod{125}$,
 - 6) $4x^3 + 6x^2 + 7x \equiv 0 \pmod{125}$,
 - B) $3x^4 8x^3 + 8x^2 3x + 3 \equiv 0 \pmod{27}$,
 - r) $x^3 + 6x + 7 \equiv 0 \pmod{27}$.

10 Дополнительные задачи

- **10.1.** Доказать, что следующие области не являются факториальными: $\mathbb{Z}\left[\sqrt{-5}\right]; \quad \mathbb{Z}\left[\sqrt{-10}\right].$
- 10.2. Показать, что следующие области являются евклидовыми:
- (a) $\mathbb{Z}[i]$; (b) $\mathbb{Z}\left[\sqrt{-2}\right]$; (c) $\mathbb{Z}\left[\sqrt{3}\right]$; (d) $\mathbb{Z}\left[\sqrt{6}\right]$.
- 10.3. Решить уравнения в целых числах.
- (a) $y^2 + 1 = x^3$;
- (b) $y^2 + 4 = x^3$;
- (c) $y^2 = x^3 + 1$.
- **10.4.** (Криптографический алгоритм шифрования с открытым ключом RSA) Пусть p, q простые числа, n = pq их произведение, d целое число взаимно простое с $\varphi(n)$. Доказать, что если $cd = 1 \mod \varphi(n)$, то

для любого целого $x \ (0 \le x < n)$

$$x^{cd} \equiv x \pmod{n}$$
.

- **10.5.** Пусть $p=3,\ q=11,\ d=3.$ Вычислить c взаимно обратное к d по модулю $\varphi(pq)=20.$ "Зашифровать" сообщение 5, то есть найти $5^3(\mod 33).$ Вычислить для проверки $(5^3)^c(\mod 33).$
- **10.6.** Доказать, что в системе шифрования RSA с модулем n=35 все ключи шифрования совпадут с ключами дешифрования (то есть для любого d взаимно простого с $\varphi(n)$ выполнено $dd=1 \pmod n$).
- **10.7.** При шифровании в системе RSA с модулем n ключ шифрования совпал с ключом дешифрования. Объяснить причину.

11 Квадратичные вычеты

Число a называется квадратичным вычетом по модулю простого нечетного числа p, если сравнение $x^2 \equiv a \mod p$ имеет решение. В противном случае a называется квадратичным невычетом.

Символ Лежандра

$$\begin{pmatrix} a \\ -p \end{pmatrix} = \begin{cases} 1, & \text{если } a \text{ квадратичный вычет} \\ -1, & \text{если } a \text{ квадратичный невычет} \end{cases}$$

Свойства символа Лежандра.

1. Если
$$a \equiv b \mod p$$
, то $\left(\frac{a}{p}\right) = \left(\frac{b}{p}\right)$.

2.
$$\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right) \left(\frac{b}{p}\right);$$
 в частности, если $p \not|b$ то $\left(\frac{b^2}{p}\right) = 1.$

3.
$$\left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}};$$

$$4. \left(\frac{1}{p}\right) = 1;$$

5.
$$\left(\frac{2}{p}\right) = (-1)^{\frac{p^2-1}{8}}$$
.

6.
$$\left(\frac{p}{q}\right) = (-1)^{\frac{(p-1)(q-1)}{4}} \left(\frac{q}{p}\right)$$
, здесь q простое нечетное число (закон взаимности квадратичных вычетов)

11.1. Вычислить символ Лежандра:

(a)
$$\left(\frac{13}{7}\right)$$
; (b) $\left(\frac{22}{13}\right)$; (c) $\left(\frac{426}{491}\right)$.

- 11.2. При помощи символа Лежандра выяснить, какие из следующих сравнений разрешимы:
- 1) $x^2 \equiv 5 \mod 13$; 2) $x^2 \equiv 5 \mod 29$
- 3) $x^2 \equiv 2 \mod 97$; 4) $x^2 \equiv 151 \mod 587$.
- 11.3. При помощи критерия Эйлера выяснить, какие из следующих сравнений разрешимы и найти соответствующие решения:
- 1) $x^2 \equiv -3 \mod 7$; 2) $x^2 \equiv 3 \mod 11$
- 3) $x^2 \equiv 6 \mod 7$.
- **11.4.** Найти значения a, при которых имеют решения сравнения:
- 1) $x^2 \equiv a \mod 3$; 2) $x^2 \equiv a \mod 5$;
- 3) $x^2 \equiv a \mod 7$; 4) $x^2 \equiv a \mod 11$;.
- **11.5.** Доказать, что сравнение $x^2+1\equiv 0\mod p$ имеет решение тогда и только тогда, когда p=4n+1 $(n=1,2,3,\ldots).$
- **11.6.** Доказать, что каноническое разложение чисел вида a^2+b^2 , где (a,b)=1, содержит простые числа вида p=4n+1 $(n=1,2,3,\ldots)$ и только такие простые числа.
- **11.7.** Доказать, что произведение двух последовательных натуральных чисел при делении на 13 не может давать в остатке 1.
- **11.8.** Доказать, что следующие сравнения разрешимы при любом простом p>2:
- (1) $(x^2 13)(x^2 17)(x^2 221) \equiv 0 \mod p$;
- (2) $(x^2 3)(x^2 5)(x^2 7)(x^2 11)(x^2 1155) \equiv 0 \mod p$.
- **11.9.** Решить уравнения в целых числах (найти целые точки, через которые проходят кривые):
- (1) $4x^2 5y = 6$; (2) $11y = 5x^2 7$; (3) $13y = x^2 21x + 110$.
- **11.10.** Найти все таки простые числа p, что разрешимы сравнения:
- 1) $x^2 \equiv 5 \mod p$; 2) $x^2 \equiv 2 \mod p$
- 3) $x^2 \equiv -7 \mod p$.

11.11. Вычислить
$$\sum_{x=2}^{p-1} \left(\frac{x}{p}\right)$$

- **11.12.** Существует ли такое n, что число $1+2+\ldots+n$ оканчивается на 7.
- 11.13. Указать число решений сравнения

a)
$$2x^2 + 7x + 5 \equiv 0 \pmod{37}$$
,

6)
$$3x^2 + 5x + 70 \equiv 0 \pmod{87}$$
,

B)
$$5x^2 + 2x - 5 \equiv 0 \pmod{71}$$
,

r)
$$5x^2 + x + 8 \equiv 0 \pmod{289}$$
.

- **11.14.** Для каких простых p число 3 является квадратичным невычетом?
- **11.15.** Для каких простых p число 7 является квадратичным вычетом?
- 11.16. Указать все простые делители квадратичной формы

a)
$$2y^2 + 10$$
, 6) $3x^2 + 15$, $x^2 + 10y^2$.

11.17. Найти наименьшее натуральное число a, для которого сравнение $x^2 \equiv a \pmod{101}$ неразрешимо.

12 Первообразные корни и индексы

Пусть n положительное целое число, \mathbb{Z}_n кольцо вычетов по модулю n, $U = U(\mathbb{Z}_n)$ группа обратимых элементов кольца \mathbb{Z}_n .

Если
$$n=p_1^{\alpha_1}p_2^{\alpha_2}\dots p_k^{\alpha_k}$$
, то $\mathbb{Z}_n\cong \mathbb{Z}_{p_1^{\alpha_1}} \bigoplus \mathbb{Z}_{p_2^{\alpha_2}} \bigoplus \dots \bigoplus \mathbb{Z}_{p_k^{\alpha_k}}$ и $U(\mathbb{Z}_n)\cong U(\mathbb{Z}_{p_1^{\alpha_1}})\times U(\mathbb{Z}_{p_2^{\alpha_2}})\times \dots \times U(\mathbb{Z}_{p_k^{\alpha_k}})$.

Порядок группы
$$U$$
 равен $\varphi(n)=n\left(1-rac{1}{p_1}
ight)\left(1-rac{1}{p_2}
ight)\ldots\left(1-rac{1}{p_k}
ight).$

Теорема 12.1 Пусть n целое положительное число. Группа $U(\mathbb{Z}_n)$ циклическая группа при n равном $n=2,4,p^{\alpha}$ или $2p^{\alpha}$, где p простое нечетное число. B остальных случаях группа $U(\mathbb{Z}_n)$ не является циклической.

Число a, порождающее $U(\mathbb{Z}_n)$, называется первообразным корнем по модулю n .

Пусть (a,n)=1. Говорят, что m порядок элемента a по модулю n, если m порядок элемента $\overline{a}=a+n\mathbb{Z}$ в группе $U(\mathbb{Z}_n)$. Будем писать в этом случае $o(\overline{a})=m$.

Элемент a первообразный корень по модулю n тогда и только тогда, когда $o(\overline{a}) = \varphi(n)$.

- 12.1. Найти первообразные корни по модулю 11, 13, 17.
- 12.2. Показать, что 2 первообразный корень по модулю 29.
- **12.3.** Показать, что если $p=2^n+1$ простое число Ферма, то 3 первообразный корень по модулю p.
- **12.4.** Пусть a первообразный корень по модулю числа p^n (p простое). Доказать, что a первообразный корень по модулю p.

Первообразные корни по модулю p^k и $2p^k$.

Далее p простое нечетное число, $n=p^k$ или $n=2p^k$. В этом случае $U(\mathbb{Z}_n)$ циклическая группа. Пусть g примитивный корень по модулю n и (a,n)=1.

В этом случае $a=g^l$ для некоторого $1\leq l\leq \varphi(n)-1$. Число l называется индексом a по модулю n и обозначается $l=\operatorname{ind} a=\operatorname{ind}_g a$. Индекс аналогичен понятию логарифма, при этом первообразный корень играет роль аналогичную основанию логарифма.

$$indab = inda + indb$$

Для небольших p составлены таблицы индексов.

Теорема 12.2 Пусть $(m, \varphi(n)) = d$. Сравнение

$$x^m = a \mod n$$

разрешимо тогда и только тогда, когда inda делится на d. В случае разрешимости сравнение имеет d решений.

Отметим, что сравнение $x^m \equiv a \mod n$ эквивалентно $m \mathrm{ind} x \equiv \mathrm{ind} a \mod \varphi(n)$.

- **12.5.** По таблице индексов найти индексы по модулю 41 следующих чисел: 27, 21, 2.
- 12.6. Составить таблицу индексов по модулю 11.
- 12.7. Пользуясь таблицей индексов решить сравнения:
- (a) $x^{60} \equiv 79 \mod 97$;
- (b) $x^{55} \equiv 17 \mod 97$;
- (c) $x^{15} \equiv 46 \mod 97$;
- (d) $x^7 \equiv 7 \mod 11$.

- 12.8. Решить сравнения
 - a) $12x^{18} \equiv 54 \pmod{13}$, B) $x^{18} \equiv 1 \pmod{77}$,
 - 6) $x^6 \equiv 23 \pmod{13}$, $r) x^{12} \equiv 1 \pmod{77}$.
- 12.9. Используя свойства индексов, найти остаток от деления
 - а) 100^{300} на 13, в) 200^{400} на 17,
 - б) 300^{500} на 19, г) 100^{200} на 11.
- **12.10.** Через какие точки (x,y) с целыми координатами x и y проходит кривая
 - a) $19y = 3x^4 + 22$, 6) $13y = 3x^2 + 20$.

Литература

- [1] Виноградов И.М. Основы теории чисел М.:Наука 1981. 172 с
- [2] Айерленд К., Роузен М. Kлассическое введение в современную теорию чисел. М.:Мир 1987. 428 с
- [3] Кудреватов Г.А. Сборник задач по теориии чисел. М.:Просвещение 1970. 128 с
- [4] 3aдачи и упраженения по теории чисел. Часть 1 Н. Новгород.:ННГУ — 1995. - 29 с
- [5] Задачи и упраженения по теории чисел. Часть 2 Н. Новгород.:ННГУ $1995.-32~{\rm c}$
- [6] Корешков Н.А. *Теория чисел: учебно-методическое пособие* Казань:Издательство Казанский университет – 2010. – 44 с