УДК 532.529.6

МОДЕЛИРОВАНИЕ БРОУНОВСКОЙ КОАГУЛЯЦИИ АЭРОЗОЛЬНЫХ НАНОЧАСТИЦ В СВОБОДНОЙ ТУРБУЛЕНТНОЙ СТРУЕ¹⁾

А.К. ГИЛЬФАНОВ 1 , Ш.Х. ЗАРИПОВ 1 , В. КОХ 2

¹ Казанский (Приволжский) федеральный университет
² Институт токсикологии и экспериментальной медицины им. Д. Фраунхофера, Ганновер, Германия E-mail: artur.gilfanov@kpfu.ru; shamil.zaripov@kpfu.ru; wolfgang.koch@item.fraunhofer.de

MODELLING OF BROWNIAN COAGULATION OF AEROSOL NANOPARTICLES IN A FREE TURBULENT JET

A.K. GILFANOV¹, S.K. ZARIPOV¹, W. KOCH²

¹ Kazan Federal University, ² Fraunhofer Institute of Toxicology and Experimental Medicine, Gannover, Germany

Аннотация

Реализована математическая модель броуновской коагуляции аэрозольных наночастиц в свободной турбулентной струе. Модель основана на численном решении общего уравнения динамики аэрозоля методом моментов и осредненных по Рейнольдсу уравнений Навье—Стокса. Приведены результаты численных расчетов, показывающие влияние объемной доли аэрозоля на средний размер частиц.

Ключевые слова: Метод моментов, броуновская коагуляция, свободная турбулентная струя

Summary

The mathematical model of Brownian coagulation of aerosol nanoparticles in a free turbulent jet is realized. The model is based on the numerical solution of the general dynamics equation by a moment method and the Reynolds-averaged Navier-Stokes equations. The results of calculations that show the influence of aerosol volume fraction on the mean size of particles are presented.

Key words: Method of moments, Brownian coagulation, free turbulent jet.

Введение

Формирование аэрозольных наночастиц в турбулентной струе встречается в различных природных и технологических процессах. Например, сверхмалые частицы образуются в выхлопных газах двигателей внутреннего сгорания [6]. Такие частицы представляют опасность для здоровья людей, и в настоящее время для их учета активно ведется разработка счетных устройств. В аэрозольных реакторах в условиях турбулентной струи происходит синтез частиц субмикронного размера с последующим их использованием для калибровки измерительных устройств или тестирования фильтров [2]. Одним из механизмов формирования частиц является броуновская коагуляция — рост частиц в размере в результате их столкновения и слипания вследствие броуновского движения. Целью настоящей работы является развитие и реализация в программе Fluent математической модели броуновской коагуляции аэрозольных наночастиц в турбулентной струе.

1. Постановка задачи

Смесь воздуха и пара DEHS, насыщенного при температуре 180° C, подается со скоростью $U_0=45$ м/с из замкнутого объема через небольшое отверстие диаметра d=1 мм в камеру кубической формы со стороной 40 см. На расстоянии нескольких диаметров от отверстия в зоне смешения с

¹⁾Работа выполнена при поддержке РФФИ (проекты 12-01-00333, 14-01-31118)

холодным воздухом происходит сильное пересыщение пара и интенсивная нуклеация капель наноразмера. В дальнейшем в свободной турбулентной струе капли растут в размере вследствие конденсации и коагуляции (рис. 1). В настоящей работе мы предполагаем, что пересыщение пара настолько высоко, что приводит к максимально возможной скорости нуклеации, и фазовый переход из пара в частицы критического диаметра 1.5 нм полностью происходит в выходном сечении отверстия. Таким образом, динамика частиц определяется влиянием течения несущей среды и явлением коагуляции.

Рис. 1: Схема формирования частиц в турбулентной струе

2. Математическая модель

Для моделирования течения аэрозоля используется эйлеров-эйлеров подход. В найденном поле течения несущей среды решается уравнение динамики аэрозольных частиц.

Несущая среда в приближении стационарного вязкого течения сжимаемой неизотермической жидкости описывается осредненными по Рейнольдсу уравнениями Навье-Стокса. В качестве модели турбулентности выбрана стандартная $k - \epsilon$ модель. Уравнения записываются в цилиндрической системе координат с учетом осевой симметрии поля течения. Замыкает систему уравнение состояния идеального газа.

В потоке несущей среды динамика функции распределения частиц по размерам n(v,t) описывается уравнением [1]

$$\frac{\partial \rho n(v,t)}{\partial t} + \nabla \cdot (\rho \overline{u} n(v,t)) = \nabla \cdot (D \nabla n(v,t)) + \\ + \frac{1}{2} \int_{0}^{v} \beta(v-v',v') n(v-v',t) n(v',t) dv' - n(v,t) \int_{0}^{\infty} \beta(v,v') n(v',t) dv'.$$

$$\tag{1}$$

Второй член в левой части описывает перенос частиц вследствие конвекции в предположении отсутствия инерции. Первый член в правой части представляет диффузионный перенос частиц с коэффициентом диффузии *D*. Скорость появления и исчезновения частицы объема *v* вследствие коагуляции описывают второй и третий члены в правой части уравнения соответственно.

Для решения уравнения (1) используется метод моментов [4, 5]. Для функции распределения частиц

по размерам n(v,t) момент порядка k имеет вид

$$M_k = \int_0^\infty v^k n(v, t) dv.$$
⁽²⁾

Моменты характеризуют различные интегральные характеристики распределения n(v,t): M_0 — общая концентрация частиц, M_1 — объемная доля частиц. Умножив (1) на объем v_k и проинтегрировав по всевозможным объемам, получим уравнение динамики для момента M_k

$$\frac{\partial \rho M_k}{\partial t} + \nabla \cdot (\rho \overline{u} M_k) = \nabla \cdot (D \nabla M_k) + \rho S_{M_k}.$$
(3)

где S_{M_k} – источниковый член, учитывающий коагуляцию. В общем случае коэффициент диффузии D представляется как сумма коэффициентов молекулярной диффузии D_m и турбулентной диффузии D_t ($D_t = \mu_t/\text{Sc}_t$, μ_t – турбулентная вязкость, Sc_t – турбулентное число Шмидта). Однако в турбулентном потоке D_t значительно выше D_m , поэтому молекулярной диффузией пренебрегаем.

В предположении логнормальной функции распределения n(v,t) задача (3) может быть сведена к решению уравнений для первых трех моментов. В этом случае концентрация частиц объема v определяется как

$$n(v) = \frac{N}{3\sqrt{2}v\ln\sigma_g} \exp\left(-\frac{\ln^2(v/v_g)}{18\ln^2\sigma_g}\right),\tag{4}$$

где N — общая концентрация частиц, v_g — среднее геометрическое объема частиц, σ_g - стандартное геометрическое отклонение. Значения параметров выражаются через первые три момента

$$v_g = \frac{M_1^2}{M_0^{1.5} M_2^{0.5}}, \quad S = \frac{M_0 M_2}{M_1^2}, \quad \ln^2 \sigma_g = \frac{1}{9} \ln S, \tag{5}$$

где *S* – индекс полидисперности. Момент произвольного порядка может быть выражен через момент нулевого или первого порядка

$$M_k = M_0 \overline{v}^k S^{k^2/2 - k/2} = M_1 \overline{v}^{k-1} S^{k^2/2 - k/2}, \tag{6}$$

где $\overline{v} = M_1/M_0$ – средний объем частиц.

Для учета коагуляции необходимо вывести выражения для источниковых членов в (3). В свободномолекулярном режиме (для чисел Кнудсена Kn > 10, Kn = $2\lambda/d_p$, λ – длина свободного пробега молекул воздуха, d_p – диаметр частицы) частота столкновений частиц $\beta(v, v')$ имеет вид

$$\beta(v,v') = A_1 \left(\frac{1}{v} + \frac{1}{v'}\right)^{1/2} (v^{1/3} + v'^{1/3})^2, \tag{7}$$

где $A_1 = (3/4\pi)^{1/6} (6k_{\rm B}T/\rho_p)^{1/2}$, $k_{\rm B}$ – константа Больцмана, T – температура среды, ρ_p – плотность частиц. Интегрирование по всевозможным объемам приводит к выражениям для динамики нулевого и второго момента вследствие коагуляции

$$\frac{dM_0}{dt} = -A_1 b_0 [M_0 M_{1/6} + 2M_{1/3} M_{-1/6} + M_{2/3} M_{-1/2}],$$

$$\frac{dM_2}{dt} = 2A_1 b_2 [M_1 M_{7/6} + 2M_{5/6} M_{4/3} + M_{1/2} M_{5/3}],$$
(8)

где $b_0 = 0.633 + 0.092\sigma_g^2 - 0.022\sigma_g^3$, $b_2 = 0.39 + 0.5\sigma_g - 0.214\sigma_g^2 + 0.029\sigma_g^3 - аппроксимации, полученные в [3].$

В режиме сплошной среды (Кп < 0.1) частота столкновений частиц $\beta(v, v')$ имеет вид

$$\beta(v,v') = A_2 \left(\frac{C(v)}{v} + \frac{C(v')}{v'}\right) (v^{1/3} + v'^{1/3}),\tag{9}$$

где $A_2 = 2k_{\rm B}T/3\mu$, μ – коэффициент кинематической вязкости газа, C(v) = 1 + 1.591Kn – поправка Каннингема. Поправка Каннингема позволяет использовать выражение (9) и в режиме, переходном от свободномолекулярного к режиму сплошной среды (0.1 < Kn < 1). После интегрирования уравнения динамики моментов принимают вид

$$\frac{dM_0}{dt} = -A_2[M_0^2 + M_{1/3}M_{-1/3} + K_s(M_0M_{-1/3} + M_{1/3}M_{-2/3})],
\frac{dM_2}{dt} = 2A_2[M_1^2 + M_{4/3}M_{2/3} + K_s(M_1M_{2/3} + M_{4/3}M_{1/3})],$$
(10)

где $K_s = 1.591\lambda (4\pi/3)^{1/3}$.

Во всем спектре размеров частиц (для любого Kn) источниковые члены для нулевого и второго момента записываются как

$$\frac{dM_0}{dt} = -\delta M_0^2, \quad \frac{dM_2}{dt} = \zeta M_1^2, \tag{11}$$

где коэффициенты пропорциональности δ , ζ находятся как гармоническое среднее

$$\frac{1}{\delta} = \frac{1}{\delta_{fm}} + \frac{1}{\delta_c}, \quad \frac{1}{\zeta} = \frac{1}{\zeta_{fm}} + \frac{1}{\zeta_c}, \tag{12}$$

$$\delta_{fm} = A_1 b_0 \overline{v}^{1/6} [S^{19/72} + 2S^{-1/72} + S^{-5/72}], \\ \delta_c = A_2 [1 + S^{1/9} + K_s \overline{v}^{-1/3} S^{2/9} (1 + S^{2/9})],$$
(13)

$$\zeta_{fm} = A_1 b_2 \overline{v}^{1/6} [S^{31/72} + 2S^{11/72} + S^{7/72}], \zeta_c = A_2 [1 + S^{1/9} + K_s \overline{v}^{-1/3} S^{-1/9} (1 + S^{2/9})].$$
(14)

3. Результаты

Рис. 2: Зависимость среднего геометрического диаметра частиц от безразмерной осевой координаты на оси симметрии (а). График функции распределения частиц по размерам в точке (400*d*, 0) (b)

Представленная математическая модель реализована с помощью программы Fluent. С учетом осевой симметрии выбрана прямоугольная расчетная область. Диаметр выходного отверстия d = 0.001 м, длина области 400d = 0.4 м, высота 100d = 0.1 м. Использована структурированная расчетная сетка 832×316 . Граничные условия для поля течения выбирались в соответствии со значениями, выбранными в экспериментах (рис. 1) [2]. При данных параметрах число Рейнольдса Re = 2500. В выходном сечении отверстия предполагался заданным монодисперсный аэрозоль с параметрами: $d_{g0} = 1.5$ нм — среднее геометрическое диаметра, $\sigma_g = 1$, C_v — объемная доля аэрозоля, зависящая от температуры насыщения пара. Граничные условия для моментов в выходном сечении отверстия определялись следующим образом: $M_{00} = C_v/v_{g0}$, $M_{10} = C_v$, $M_{20} = C_v \cdot v_{g0}$, где $v_{g0} = \pi d_{a0}^3/6$. Уравнения для моментов решались с

помощью User-defined scalars (UDS) и User-defined functions (UDF). При расчетах использованы схемы второго (second-order upwind) и третьего (MUSCLE) порядков.

Динамика изменения среднего геометрического диаметра частиц вдоль оси симметрии для двух значений объемной доли аэрозоля $C_v = 1.3 \cdot 10^{-7}$ и $2.5 \cdot 10^{-7}$ показана на рис. 2а. Коагуляция — процесс, скорость которого пропорциональна квадрату концентрации частиц, и в рассматриваемых условиях наиболее интенсивно происходит в самом начале струи. Далее вдоль оси симметрии концентрация уменьшается, и скорость роста частиц также падает. Для $C_v = 1.3 \cdot 10^{-7}$ среднее геометрическое диаметра d_g в точке (400*d*, 0) равно 26 нм. При большей объемной доле $C_v = 2.5 \cdot 10^{-7}$ достигается более интенсивная коагуляция, и d_g оказывается равным 32 нм. Таким образом, в данных услових увеличение объемной доли аэрозоля примерно в 2 раза приводит к увеличению среднего размера частиц в 1.2-1.3 раза. Стандартное геометрическое отклонение σ_g быстро выходит на постоянное значение, и для обоих случаев равно 1.33, что соответствует полидисперсному аэрозолю. Функции распределения частиц по размерам $n(d_p)$ на выходной границе расчетной области изображены на рис. 2b. Как можно видеть, кривые для обоих случаев достаточно близки.

ЛИТЕРАТУРА

- 1. Friedlander S.K. Smoke, dust, and haze. Fundamentals of aerosol dynamics. Oxford University Press, 2000.
- 2. Koch W., Lodding H., Pohlmann G. A reference aerosol generator based on Brownian coagulation in a continuously fed well stirred tank reactor // J. Aerosol Sci. 2012. V. 49. P. 1-8.
- Lee K.W., Chen H. Coagulation rate of polydisperse particles // Aerosol Sci. Technol. 1984. V. 3. P. 327-334.
- 4. **Pratsinis S.E.** Simultaneous nucleation, condensation, and coagulation in aerosol reactor // J. Coll. Interface Sci. 1988. V. 124. P. 416–427.
- Settumba N., Garrick S.C. Direct numerical simulation of nanoparticle coagulation in temporal mixing layer via a moment method // J. Aerosol Sci. – 2003. – V. 34. – P. 149–167.
- Wu J., Menon S. Aerosol dynamics in the near field of engine exhaust plumes // J. Appl. Meteor. 2001. – V. 40. – P. 795–809.

REFERENCES

- 1. Friedlander S.K. Smoke, dust, and haze. Fundamentals of aerosol dynamics. Oxford University Press, 2000.
- Koch W., Lodding H., Pohlmann G. A reference aerosol generator based on Brownian coagulation in a continuously fed well stirred tank reactor // J. Aerosol Sci. – 2012. – V. 49. – P. 1-8.
- Lee K.W., Chen H. Coagulation rate of polydisperse particles // Aerosol Sci. Technol. 1984. V. 3. P. 327-334.
- 4. **Pratsinis S.E.** Simultaneous nucleation, condensation, and coagulation in aerosol reactor // J. Coll. Interface Sci. 1988. V. 124. P. 416–427.
- Settumba N., Garrick S.C. Direct numerical simulation of nanoparticle coagulation in temporal mixing layer via a moment method // J. Aerosol Sci. – 2003. – V. 34. – P. 149–167.
- Wu J., Menon S. Aerosol dynamics in the near field of engine exhaust plumes // J. Appl. Meteor. 2001. – V. 40. – P. 795–809.