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Abstract. We consider one family S of 2-valued transformations on the

interval [0, 1] with measure µ, endowed with a set of weight functions. We con-

struct invariant measure µS = µ for this multi-valued dynamical system with

weights and show the interplay between such systems and masked dynamical

systems, which leads to image processing.

1. Introduction

Let X be a space with finite measure µ on σ-field B of subsets of X, N ∈ N
be an integer, I = {1, . . . , N}, and Si : X → X — some measurable transfor-

mations. Consider a set of measurable functions (endowment){
αi : X → [0, 1], i ∈ I

∣∣∣∣ ∑
i∈I

αi ≡ 1

}
.

A collection

(X;B;µ;S1, . . . , SN ;α1, . . . , αN) (1)

is called multi-valued dynamical system with weights, and the map S = ∪i∈ISi
with fixed pairs {(Si, αi)}i∈I — endowed N-transformation (see [1]). Regarding

this, we can establish a new measure on B:

µS(B) =
∑
i∈I

∫
S−1
i (B)

αi(x) dµ.

One of the important questions of dynamical system theory is finding an in-

variant measure µS = µ.
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2 P. I. TROSHIN

The endowment α plays a rôle of a parameter which controls measure µS.

On the other hand, αi(x) could be considered as a probability of choosing

and applying the transformation Si (out of S) to a point x ∈ X in stochastic

dynamical system. Finally, as we show further, this parameter can uniquely

define some single-valued dynamical system connected to S.

In this paper we continue (after [2]) studying the following 2-transformation

S = S1 ∪ S2 of the interval [0, 1] (see Fig. 1):

S1(x) =

{
1

1−ax, x ∈ [0, 1− a);
1

1−ax−
a

1−a , x ∈ [1− a, 1],

S2(x) =

{
1

1−ax, x ∈ [0, a);
1

1−ax−
a

1−a , x ∈ [a, 1],

with a shift a ∈
(
0, 1

2

]
as its parameter. Dynamical system ([0, 1], S) is tightly

connected to the theory of β-decompositions (see [3, 4, 5, 6]).

Figure 1. The design of 2-transformation S.

As a motivation for this paper in introduction we examine two points: in-

variance of measure for this endowed 2-transformation and masked dynamical

system associated with it.

1.1. Invariance of measure. Let λ be the Lebesgue measure on [0, 1], B —

the Borel σ-field on [0, 1]. Let also µ(B) =
∫
B
p(x) dλ be a measure, absolutely

continuous with respect to the Lebesgue measure (µ� λ), with density p(x) ∈
L1([0, 1],B, λ) and p(x) ≥ 0.

According to [1], we endow 2-transformation S with a set of weight functions

α = {α1(x), α2(x)}, α1(x), α2(x) ∈ L1([0, 1],B, λ) such that α1(x) +α2(x) = 1

and α1(x), α2(x) ≥ 0. Then we can introduce a new measure µS on B:

µS(B) =

∫
S−1
1 (B)

α1(x)p(x) dλ+

∫
S−1
2 (B)

α2(x)p(x) dλ.

There are three independent parameters in the abovementioned construc-

tion: density function p(x), shift number a and endowment α = {α1(x), α2(x)}.
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Whether we search for endowed transformation for a given measure µ or a mea-

sure µS = µ for a given transformation S — there is a certain relation between

these parameters, defined by equality µS = µ.

Further on, we fix three parameters: a ∈
(
0, 1

2

]
, {α1(x), α2(x)}, p(x), and

let n ∈ N be such that

1

n+ 1
< a ≤ 1

n
(n ≥ 2).

Here we cite the following criterion of existence of invariant measure.

Theorem 1 (see [2]). µS = µ if and only if the following conditions hold true:

n−1∑
k=−1

p(x+ ka) =
1

1− a

n−2∑
k=−1

p

(
x+ ka

1− a

)
, ∀x ∈ [a, 1− (n− 1)a); (2)

n−2∑
k=−1

p(x̃+ ka) =
1

1− a

n−3∑
k=−1

p

(
x̃+ ka

1− a

)
, ∀x̃ ∈ [1− (n− 1)a, 2a); (3)

α1(x+ma)p(x+ma) =

(
m∑

k=−1

p(x+ ka)− 1

1− a

m−1∑
k=−1

p

(
x+ ka

1− a

))
, (4)

where for n = 2, m = 0, x ∈ [a, 1− a),

for n ≥ 3, m = 0, x ∈ [a, 2a),

for n ≥ 3, m = 1, 2, . . ., x ∈ [a, 2a) and x+ma ∈ [2a, 1− a).

There is no restriction on function α1(x) on the sets [0, a) and [1− a, 1].

Equations (2)–(3) define function p(x) on the interval [0, 1], and equation (4)

defines endowment α. We can revise (4) into more compact and constructive

formula:

α1(x)p(x) =
s∑

k=0

p(x− ka)− 1

1− a

s∑
k=1

p(x−ka
1−a ), x ∈ [a, 1− a),

where s = [x
a
] ([x] is an integer part of x).

To clarify the meaning of the theorem we give two corollaries from it.

Corollary 1 (see [2]). Given measure µ� λ there exists endowed 2-transfor-

mation S(a) preserving measure µ if and only if p(x), a and {α1(x), α2(x)}
satisfy conditions (2)–(4).

Corollary 2 (see [2]). Given endowed 2-transformation S(a) there exists mea-

sure µ� λ which is preserved by transformation S if and only if p(x), a and

{α1(x), α2(x)} satisfy conditions (2)–(4).
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There is a convenient graphical scheme of summation intervals placement

on the interval [0, 1] for the equations (2)–(3), see Fig. 2–3.

0 a x b 1

x

1 - a

0 2axèb 1

xè

1 - a

Figure 2. Scheme of summation intervals placement for equa-

tions (2) (upper) and (3) (lower), here b =1−(n−1)a, even n.

0 a x b 1

x

1 - a

0 2axè b 1

xè

1 - a

Figure 3. Scheme of summation intervals placement for equa-

tions (2) (upper) and (3) (lower), here b =1−(n−1)a, odd n.

Informally, we can depict these equations (2)–(3) as follows:∑
p(•) =

1

1− a
∑

p(�).

Regarding Theorem 1, the following question arises.

Question 1. Are there functions satisfying equations (2)–(3)?

One trivial solution is p ≡ 0.

Slightly less trivial example of constant density p ≡ c, c ∈ R, c > 0, is

presented in the following corollary.

Corollary 3 (see [2]). (c · λ)S = c · λ if and only if a = 1
n

, n = 2, 3, . . ..
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However, this 2-valued dynamical system allows even more sophisticated

density: the equations (2)–(4) hold true for some non-constant p(x), as shown

in the next theorem.

Let χB(x)=

{
0, x 6∈ B,
1, x ∈ B,

be a characteristic function for a subset B ⊂ [0, 1].

Theorem 2 (see [2]). Given n = 2, 3, . . . there exist a shift a ( 1
n+1

< a< 1
n

),

piecewise constant density p(x) and endowment {α1(x), α2(x)}, such that

µS = µ. Namely,

p(x) = βχ[0,δ)(x) + (β + γ)(1− δ)χ[δ,1−δ)(x) + γχ[1−δ,1](x),

a =
n+ 1−

√
n2 + 1

n
, δ =

an

2
, β, γ > 0, n is even,

p(x) = βχ[0,1−δ)(x) + (β + γ)(1− δ)χ[1−δ,δ)(x) + γχ[δ,1](x),

a =
n+ 1−

√
n2 − 1

n+ 1
, δ =

a(n+ 1)

2
, β, γ > 0, n is odd.

Remark. Theorem 2 yields a family of densities with two parameters β, γ > 0.

For computational simplicity in this theorem a is chosen in such a way that

the middle intervals in the graphical scheme touch each other, see Fig. 4 for

even n.

0 1

1-

n

2
a

1 - a

n

2
a

Figure 4. Special choice of a shift a: n
2
a = 1− n

2
a

1−a , even n.

The resulting piecewise density consists of three domains, see Fig. 5.

x

pHxL

Figure 5. Typical view of a piecewise constant density from Theorem 2.
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However, the same question arises again: are there another non-trivial (non-

constant) densities satisfying equations (2)–(3)?

In Section 2 we present a scheme to construct non-trivial densities in case

of a = 3−
√

5
2

(n = 2) and study some properties of the functions we obtain

there. In Section 3 there is a scheme to construct such densities for arbitrary

a ∈ (0, 1
2
] (n ≥ 2).

Finally, in this subsection we cite the following lemma which implies ”mirrow

twoness” of invariant measures densities (see Corollary 4): if p(x) is such a

density, then the function g(x) = p(1 − x) is again a density of invariant

measure.

Lemma 1 (see [2]). Let Ai(x)=αi(x)p(x), i=1, 2. Then µS =µ if and only if

A1((1− a)x) + χ[ 1−2a
1−a

,1](x)A1((1− a)x+ a) + A2((1− a)x+ a)+

+ χ[0, a
1−a

)(x)A2((1− a)x) =
p(x)

1− a
(5)

λ-almost everywhere on [0, 1].

Corollary 4. If p(x) is invariant measure density, then the function g(x) =

p(1−x) with endowment βi(x) = α3−i(1−x), i = 1, 2, is also invariant measure

density.

Proof. Let p(x) be invariant measure density, g(x) = p(1 − x), Bi(x) =

βi(x)g(x) = α3−i(1− x)p(1− x) = A3−i(1− x). Substituting 1− x instead of

x in equality (5) yields

g(x)
1−a = p(1−x)

1−a = A1((1− a)(1− x)) + χ[0, a
1−a

](x)A1((1− a)(1− x) + a)+

+ A2((1− a)(1− x) + a) + χ( 1−2a
1−a

,1](x)A2((1− a)(1− x)) =

= A1(1− ((1− a)x+ a)) + χ[0, a
1−a

](x)A1(1− (1− a)x) + A2(1− (1− a)x)+

+ χ( 1−2a
1−a

,1](x)A2(1− ((1− a)x+ a)) =

= B2((1− a)x+ a) + χ[0, a
1−a

](x)B2((1− a)x) +B1((1− a)x)+

+ χ( 1−2a
1−a

,1](x)B1((1− a)x+ a).

Thus equality (5) holds true for g(x) almost everywhere. �

1.2. Masked dynamical system. As an extra motivation we consider here

the following argument: endowment α of dynamical system S can be connected

with mask endowment of some iterated functions system F (see below).

Consider some disjoint cover M = {Mi}i∈I of the set X: Mi ∈ B, i ∈ I,

Mi∩Mj = ∅, i, j ∈ I, i 6= j, ∪i∈IMi = X. Let αi = χMi
, i ∈ I, be characteristic

functions of the subsets Mi ⊂ X.
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We may say that, regarding the contribution of S−1
i (B)∩Mi to the measure

µS(B) =
∑
i∈I

µ(S−1
i (B) ∩Mi) = µ

(
∪i∈I(S−1

i (B) ∩Mi)
)
,

N -valued transformation turns into the following single-valued one:

S̃(x) =


S1(x), x ∈M1,

...

SN(x), x ∈MN .

In the case of arbitrary endowment α we may consider single-valued sto-

chastic dynamical system:

˜̃S(x) =


S1(x) with probability α1(x),

...

SN(x) with probability αN(x).

Such an approach that turns multi-valued dynamical system into single-

valued one is implemented in [7] for mappings S, connected with iterated

function systems (IFS). It lets us establish and control fractal transformations

between IFS attractors. Such transformations have direct practical value (see

below). Here we introduce main points from [7] (relevant to this paper).

Let X 6= ∅ be a compact Hausdorff space, K(X) — a set of nonempty

compact subsets of X. Let I = {1, . . . , N} be a finite set of positive integers,

I∞ — a set of infinite sequences of numbers from I, fi : X → X, i ∈ I, —

continuous mappings. Then F = (X; f1, . . . , fN) is called iterated function

system (IFS).

Due to decreasing monotone inclusion of corresponding compact subsets one

can correctly define the mapping

Π: I∞ → K(X), σ = σ1σ2 . . . 7→
∞⋂
k=1

fσ1 ◦ fσ2 ◦ · · · ◦ fσk(X).

If for all σ ∈ I∞, Π(σ) is a singleton, then the IFS is called point-fibred. In

this case a mapping

π : I∞ → A = π(I∞) ⊂ X, {π(σ)} = Π(σ),

is called the coding map of F , I∞ — the code space of F , and σ ∈ I∞ — the

address of the point π(σ) ∈ A.

For point-fibred IFS on a compact Hausdorff space there exists a unique set

A ∈ K(X) such that

A =
⋃
i∈I

fi(A),
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and A = π(I∞) (see [7]). This set is called the attractor of the given IFS.

IFS attractor often happens to be a fractal set or even self-similar one, which

is usually of huge interest.

Henceforth, we constrain ourselves to point-fibred IFS on some compact

Hausdorff space only (however, this is rather typical, cf. Remark 2.5 in [7]).

A point x ∈ A may have more than one address (even uncountably many).

The following definition will be useful to make the choice of address unique.

A subset Ω ⊂ I∞ is called the address space of the IFS F if π|Ω : Ω → A is

bijective. Then the inverse mapping

τ : A→ Ω, x 7→ (π|Ω)−1(x),

is called the section of π.

If there are two point-fibred IFS F={X; f1, . . . , fN} and G={Y ; g1, . . . , gN}
(with common I∞) on compact Hausdorff spaces X and Y , AF and AG are

their attractors, πG — the coding mapping of G, τF — the section of πF , then

we can define the fractal transformation1 between attractors of F and G:

TFG : AF → AF , x 7→ πG ◦ τF(x).

The paper [7] gives a continuity criteria for TFG, and also describes some

applications of fractal transformations for conversion and filtering images and

steganography (hidden data transmission, for example, packing several images

into one).

The choice of the address space ΩF of F defines a fractal transformation.

In [7] two methods for construction of ΩF are proposed, they lead to sections

τF with good properties.

One of the methods is to use top addresses: sequences from I∞ may be put

in lexicographic order, which lets us choose a unique (”top”) element from

π−1(x) for all x ∈ A (see [5, 8]). This method is computationally simple and

can be easily implemented on computer. However, only a few certain sections

can be obtained in this way.

Let us consider the second method in more detail. Let F be a point-fibred

IFS with injective maps fi, i ∈ I. A collection of subsetsM = {Mi ⊂ A, i ∈ I}
is called the mask of F if

(1) Mi ⊂ fi(A), i ∈ I;

(2) Mi ∩Mj = ∅, i, j ∈ I, i 6= j;

(3) ∪i∈IMi = A.

1Under this transformation the fractal dimension of a set could be changed.
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For all x ∈ A, there exists a unique i ∈ A such that x ∈ Mi ⊂ fi(A). The

mapping

T : A→ A, x 7→


f−1

1 (x), x ∈M1

...

f−1
N (x), x ∈MN ,

is called the masked dynamical system for F .

This system is used to construct a section τ : A → τ(A) ⊂ I∞ by following

the orbit T n(x) = T ◦ · · · ◦ T︸ ︷︷ ︸
n times

(x) of point x, namely,

τ(x) = σ(x) = σ1(x)σ2(x) . . . , where x ∈ (T k−1)−1(Mσk(x)), k = 1, 2, . . . .

In this case π(σ(x)) = x (see [7]).

Thus the maskM of dynamical system connected with IFS is a special case

of endowment α, when αi = χMi
, i ∈ I. We can also consider stochastic mask

defined by endowment weight functions: if suppαi ⊂ fi(A), i ∈ I, then

˜̃T (x) =


f−1

1 (x) with probability α1(x),
...

f−1
N (x) with probability αN(x).

Let us describe the connection between this mask construction and 2-transformation

S. Consider the following IFS (see Fig. 6):

(X = [0, 1]; f1(x) = (1− a)x, f2(x) = (1− a)x+ a). (6)

f1

f2

a

1-a

0

1

1

f1-1

f2-1

a

1-a

0

1

1

Figure 6. IFS (6) (left) and multi-valued (without mask) dy-

namical system (coincides with S) connected with it (right).

This is point-fibred IFS with injective functions f1, f2, its attractor is the

interval A = X = [0, 1]. Consider f−1
1 , f−1

2 for construction of masked dynam-

ical system T . As might be seen on Fig. 6, this dynamical system is the object

of this paper. Let M = {M1,M2} be a mask of this IFS. Then obviously,
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[0, a) ⊂ M1 and (1 − a, 1] ⊂ M2. Define M1 ∩ [a, 1 − a] and M2 ∩ [a, 1 − a]

arbitrary (M1∩M2 = ∅, M1,M2 ∈ B). The example of a mask and the process

of finding masked address of a point x ∈ A are illustrated on Fig. 7.

0.5
M1 M2

x

††

Figure 7. Example of masked dynamical system for IFS (6),

M1 = [0, 0.5), M2 = [0.5, 1], τ(x) = 222211 . . ..

As we have already mentioned, mask endowmentM of F in this case coin-

cides with endowment α = {α1(x) = χM1(x), α2(x) = χM2(x)} of S.

Then the following question arises.

Question 2. Is there an invariant measure for this masked dynamical system?

We give an example of such a measure in Section 2.

2. The case of n = 2

Here we consider the case of n = 2 in detail. The main ideas of this section

can be used further for other values of n. The conditions (2)–(3) now can be

written as:

p(x− a) + p(x) + p(x+ a) = 1
1−a

(
p
(
x−a
1−a

)
+ p

(
x

1−a

))
, x ∈ [a, 1− a); (7)

p(x̃− a) + p(x̃) = 1
1−ap

(
x̃−a
1−a

)
, x̃ ∈ [1− a, 2a). (8)

Or in equivalent way:

p(x) + p(x+ a) + p(x+ 2a) = 1
1−a

(
p
(

x
1−a

)
+ p

(
x+a
1−a

))
, x ∈ [0, 1− 2a); (9)

p(x̃) + p(x̃+ a) = 1
1−ap

(
x̃

1−a

)
, x̃ ∈ [1− 2a, a). (10)

To make it simple, we consider special shift, according to the scheme on

Fig. 4. In our case n = 2, a = 3−
√

5
2

, see Fig. 8.
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0 11-aa

Figure 8. Interval placement, a = 3−
√

5
2

(n = 2).

Here we introduce a scheme to construct a density p(x) satisfying equa-

tions (9)–(10), see Fig. 9. Consider the following marks on the X-axis: a,

1− a, 2a, 2− 3a, xk = a(1− a)k, k ≥ 1, (x1 = 1− 2a).

2-3a2a1-aa1-2a 10 x2x3...

p0
*p1 p1

* p3
*p2

*p2p3...

Figure 9. Scheme to construct a density p(x), with auxiliary

intervals marked, a = 3−
√

5
2

(n = 2).

• Fix functions p∗0, p
∗
1 ∈ L1, p∗0, p

∗
1 ≥ 0, arbitrarily, and define

p(x) =


p1(x) = 1

1−ap
∗
0( x

1−a)− p∗1(x+ a), x ∈ (1− 2a, a],

p∗0(x), x ∈ (a, 1− a],

p∗1(x), x ∈ (1− a, 2a].

• Fix function p∗3 ∈ L1, p∗3 ≥ 0, arbitrarily, and define

p(x) =


p∗3(x), x ∈ (2− 3a, 1],

p2(x) = 1
1−a(p1( x

1−a) + p∗3(x+a
1−a ))−

−p∗0(x+ a)− p∗3(x+ 2a), x ∈ (x2, 1− 2a].

• Fix function p∗2 ∈ L1, p∗2 ≥ 0, arbitrarily, and define

p(x) =


p∗2(x), x ∈ (2a, 2− 3a],

p3(x) = 1
1−a(p2( x

1−a) + p∗2(x+a
1−a ))−

−p∗0(x+ a)− p∗3(x+ 2a), x ∈ (x3, x2].

• Define for each k ≥ 4

p(x) = pk(x) = 1
1−a(pk−1( x

1−a) + p∗1(x+1
1−a))−

− p∗0(x+ a)− p∗2(x+ 2a), where x ∈ (xk, xk−1].

• Fix the value p(0) ≥ 0 arbitrarily.
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By construction, p(x) satisfies the conditions (9)–(10) (perhaps except at

most countable number of points on intervals boundaries). Notice, the function

p(x) is defined arbitrarily on (a, 1] and is restored on [0, a] after that. We need

the partition p∗0, p
∗
1, p
∗
2, p
∗
3 of the function p(x) to study its properties in more

detail.

Proposition 1. If p∗0, p
∗
1, p
∗
2, p
∗
3 are constants, then p2 is a constant, and

p3 = p4 = . . . are constants.

Proof. We denote A = 1
1−a , then

p1 = Ap∗0 − p∗1, p3 = A(p2 + p∗2)− p∗0 − p∗3,
p2 = A(p1 + p∗3)− p∗0 − p∗3, pk = A(pk−1 + p∗1)− p∗0 − p∗2, k ≥ 4.

Consider the following difference:

p4−p3 = A(p3−p2+p∗1−p∗2)−p∗2+p∗3 = A(A(p2−p1+p∗2−p∗3)+p∗1−p∗2)−p∗2+p∗3 =

= A(A(A(p1 + p∗3)− p∗0 − p∗3 − p1 + p∗2 − p∗3) + p∗1 − p∗2)− p∗2 + p∗3 =

= A(A(A(p1 + p∗3)− p∗0 − p∗3 − p1 + p∗2 − p∗3) + Ap∗0 − p1 − p∗2)− p∗2 + p∗3 =

= A(A(A(p1 + p∗3) + (p∗2− p∗3)− (p1 + p∗3))− (p1 + p∗3)− (p∗2− p∗3))− (p∗2− p∗3) =

= (A2 − A− 1)(A(p1 + p∗3) + (p∗2 − p∗3)). (11)

To simplify the calculations henceforth, we need the following equalities:


(1− a)2 = a,

a2 = 3a− 1,
1−2a
1−a = a,

A2 − A− 1 = 1
(1−a)2

(1− (1− a)− (1− a)2) = 0.

(12)

Thus the last expression in equalities (11) equals zero.

Then pk+1 − pk = A(pk − pk−1) = . . . = Ak−3(p4 − p3) = 0, k ≥ 4, q.e.d. �
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0.2 0.4 0.6 0.8 1.0

1.5

2.0

2.5

3.0

0.45 0.50 0.55 0.60

0.5

0.6

0.7

0.8

0.9

1.0

Figure 10. Example of density p(x) from Proposition 1 (p1 =

1, p∗1 = 2, p∗3 = 3, p∗2 = 2.5) (left) and corresponding function

α1(x) (on [a, 1− a]) (right).

However, the values of function p(x) we obtain can be negative. In the case

of piecewise constant density we give the following criterion for p(x) to be

non-negative.

Proposition 2. Let p∗0, p
∗
1, p
∗
2, p
∗
3 ∈ R be constants, function p(x) is obtained

according to the scheme above. Then p(x) ≥ 0 for all x ∈ [0, 1] if and only if
p∗0, p

∗
1, p
∗
2, p
∗
3 ≥ 0,

1
1−ap

∗
0 − p∗1 ≥ 0,

1
1−a(p∗3 + p∗0 − p∗1)− p∗3 ≥ 0,

1
1−a(p∗2 + p∗0 − p∗1)− p∗1 ≥ 0.

These inequalities define unbounded convex set in R4 3 {p∗0, p∗1, p∗2, p∗3}.

Proof. In view of (12), it is sufficient to notice that

p2 = A(p1 + p∗3)− p∗0 − p∗3 = A(Ap∗0 − p∗1 + p∗3)− p∗0 − p∗3 =

= (A2 − 1)p∗0 + A(p∗3 − p∗1)− p∗3 = A(p∗3 + p∗0 − p∗1)− p∗3,

p3 = A(p2 + p∗2)− p∗0 − p∗3 = A(A(p∗3 + p∗0 − p∗1)− p∗3 + p∗2)− p∗0 − p∗3 =

=(A2−1)(p∗3+p∗0)+A(p∗2−p∗3)−A2p∗1 =A(p∗2+p∗0)−(A+1)p∗1 =A(p∗2+p∗0−p∗1)−p∗1.

�

Now consider obtaining a function p(x) with the property of continuity. This

is discussed in Propositions 3–6.

Proposition 3. Given function p(x) obtained by the scheme above. Then p(x)

is continuous on (0, 1] if and only if
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• parameters y2, y3, y4 ≥ 0 satisfy the equation

y2 + y4 = 1
1−ay3, (13)

• y5 ≥ 0 is arbitrary,

• graphs of continuous functions p∗0(x), p∗1(x), p∗2(x), p∗3(x) connect points

(a, y2), (1− a, y3),(2a, y4), (2− 3a, y5) and (1, 0), see Fig. 11.

y2 y3

y4

y5

p0
*

p1
* p2

* p3
*

p1
p2

pk+1

1-2ax20 xkxk+1 a 1-a 2a 2-3a 1

Figure 11. Illustration for Proposition 3.

Proof. Let p(x) be continuous, then we substitute x = x̃ = 1−2a into (9)–(10)

and obtain

p(1− 2a) + p(1− a) + p(1) = 1
1−a(p(1−2a

1−a ) + p(1)),

p(1− 2a) + p(1− a) = 1
1−ap(

1−2a
1−a ),

wherefrom p(1) = 0. By substitution x̃ = a into (10) and taking into account
a

1−a = 1− a, we have

p(a) + p(2a) = 1
1−ap(1− a), (14)

which is equal to (13).

To prove the backward implication, let g(x) be a piecewise function, made

of functions p∗0, p
∗
1, p
∗
2, p
∗
3 ”glued together”.

By construction, p1(x) = 1
1−ag( x

1−a)− g(x+ a) on (1− 2a, a]. Then p1(x) is

continuous, because g(x) is continuous, and

p1(a) = 1
1−ag( a

1−a)− g(2a) = 1
1−ay3 − y4 = y2 = g(a).

Now add function p1(x) leftside into the set of functions which define g(x).

By construction, p2(x) = 1
1−a(g( x

1−a) + g(x+a
1−a )) − g(x + a) − g(x + 2a) on

(x2, 1− 2a], wherefrom p2(x) is continuous, and (considering g(1) = 0)

p2(1− 2a) = 1
1−a(g(1−2a

1−a ) + g(1))− g(1− a)− g(1) =

= 1
1−ag((1−2a

1−a )+)− g((1− a)+) = g((1− 2a)+).
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For k ≥ 2, by construction, pk+1(x) = 1
1−a(g( x

1−a) + g(x+a
1−a )) − g(x + a) −

g(x+2a) on (xk+1, xk], where g(x) made of functions pk, . . . , p2, p1, p0, p
∗
1, p
∗
2, p
∗
3.

Thus pk+1(x) is continuous, and

pk+1(xk) = 1
1−a(g( xk

1−a) + g(xk+a
1−a ))− g(xk + a)− g(xk + 2a) =

= 1
1−a(g(( xk

1−a)+) + g((xk+a
1−a )+))− g((xk + a)+)− g((xk + 2a)+) = g(xk+).

�

Proposition 4. Let p(x) satisfy the equations (9)–(10). If p : [0, 1] → R is

continuous, then p(0) = p(1) = 0.

Proof. It suffices to show p(0) = 0. We substitute x = 0 into (9) and obtain

p(0) + p(a) + p(2a) = 1
1−a(p(0) + p( a

1−a)),

wherefrom we have p(0) = 0 (considering (14)). �

However, the next question arises.

Question 3. Under which conditions our construction yields p(0+) = 0?

Notice that if by construction of density p(x) the equality p(0+) = 0 is not

fulfilled, then p(x) is continuous on (0, 1] but does not have finite limit at 0.

Its graph is unbounded and (or) oscillates greatly in neighborhood of 0.

0.0 0.2 0.4 0.6 0.8 1.0

1.0

1.5

2.0

2.5

3.0

3.5

0.2 0.4 0.6 0.8 1.0

-2

-1

1

2

Figure 12. Oscillating and unbounded functions.

Such situation is quite typical while constructing p(x), see Fig. 12. However,

the following Proposition 5 gives an example of a density with good properties.

Proposition 5. Let function p(x) be obtained according to the scheme above.

If functions p∗0, p
∗
1, p
∗
2, p
∗
3 form a spline of degree 1 with p∗3(1) = 0, then function

p(x) is also a spline of degree 1, furthermore

• p : [0, 1]→ R is continuous function;

• p1, p2 are linear functions;
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• graphs of the functions p3, p4, . . . make up one graph of linear function,

which connects points (0, 0) and (x2, p2(x2)), see Fig. 13.

Proof. Again let A = 1
1−a , and denote the slope of spline on corresponding

intervals as p′k ∈ R (for pk(x)). Then from the construction scheme of p(x)

itself, we obtain formulae equal to those from the proof of Proposition 1:

p′1 = A2p∗0
′ − p∗1

′, p′3 = A2(p′2 + p∗2
′)− p∗0

′ − p∗3
′,

p′2 = A2(p′1 + p∗3
′)− p∗0

′ − p∗3
′, p′k = A2(p′k−1 + p∗1

′)− p∗0
′ − p∗2

′, k ≥ 4.

y1

y2 y3
y4

y5

p1
çp2

ç
p0

ç
p1

* ’ p2
* ’

p3
* ’

0 x2 1-2a a 1-a 2a 2-3a 1

Figure 13. Illustration for Proposition 5.

Substituting A by A2 in the equation (11), we get

p′4 − p′3 = (A4 − A2 − 1)(A2(p′1 + p∗3
′) + (p∗2

′ − p∗3
′)). (15)

We need to show that the last multiplier equals zero. Let y1 = p(1 − 2a),

y2 = p(a), y3 = p(1 − a), y4 = p(2a), y5 = p(2 − 3a). We use equalities (12)

again:

p∗2
′ − p∗3

′ + A2(p′1 + p∗3
′) = y5−y4

2−5a
− y5

1−3a
+ A2

(
y2−y1
3a−1

+ y5
1−3a

)
=

= 1
(2−5a)(1−3a)

(
(1− 3a)(y5 − y4)− (2− 5a)y5 + A2(2− 5a)(y1 − y2 + y5)

)
=

= 1
(2−5a)(1−3a)

(
y5(2a− 1 + A2(2− 5a))− y4(1− 3a) + A2(2− 5a)(y1 − y2)

)
=

= 1
(2−5a)(1−3a)

(
−A(y2 − y1)(1− 3a) + A2(2− 5a)(y1 − y2)

)
=

= 1
(2−5a)(1−3a)

(y1 − y2)
(
(1− 3a)A+ A2(2− 5a)

)
=

= 1
(2−5a)(1−3a)

(y1 − y2) ((1− 3a)A+ (A+ 1)(2− 5a)) .

Taking into account (12), we have

(1− 3a)A+ (A+ 1)(2− 5a) = A(1− 3a+ 2− 5a) + 2− 5a =

= A(3−8a+(1−a)(2−5a)) = A(3−8a+2−7a+5a2) = 5A(a2−3a+1) = 0.

Then p′k+1 − p′k = A(p′k − p′k−1) = . . . = Ak−3(p′4 − p′3) = 0, k ≥ 4, q.e.d.

Since the second statement of Proposition 3 holds true (by the construction

scheme of the spline), function p is continuous on (0, 1]. Since it is linear on

(0, x2], then limit p(0+) exists, and by Proposition 4, p(0) = p(0+) = 0. �
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Figure 14. Example of spline density p(x) from Proposition 5

(left). Here y2 = 1.1, y3 = 1.2, y5 = 1, y4 = 1
1−ay3 − y2. Corre-

sponding function α1 (on [a, 1− a]) (right).

Fig. 14 shows an example of non-trivial density discussed in Proposition 5.

Obviously such function is integrable. To accomplish, we add non-negativity

criterion.

Proposition 6. Let p(x) satisfy the conditions of Proposition 5. Denote y3 =

p(1 − a), y4 = p(2a), y5 = p(2 − 3a). Then p(x) ≥ 0 for all x ∈ [0, 1] if and

only if 
y3 ≥ y4 ≥ 0,

y5 ≥ 11a−4
2−5a

y4 − 29a−11
8a−3

y3 (11a−4
2−5a

≈ 2.24, 29a−11
8a−3

≈ 1.38),

y5 ≥ 0.

These inequalities define unbounded convex set in R3 3 {y3, y4, y5}.

Proof. Let y0 = p(x2), y2 = p(a). In view of Proposition 5, this statement is

equivalent to non-negativeness of spline values p(x) at the vertices: yk ≥ 0,

k = 0, . . . , 5.

Let y1 = p(1−2a), and substitute x̃ = 1−2a into (10). Then using 1−2a
1−a = a,

we have

y1 + y3 = 1
1−ay2.

We use expression (12) to simplify the quantities henceforth:

y1 = 1
1−ay2−y3 = 1

1−a( 1
1−ay3−y4)−y3 = (( 1

1−a)2−1)y3− 1
1−ay4 = 1

1−a(y3−y4) ≥ 0,

wherefrom y1 ≥ 0 if and only if y3 ≥ y4.

Further, y2 = 1
1−ay3 − y4 ≥ y3 − y4 ≥ 0 ( 1

1−a ≈ 1.6), thus condition y2 ≥ 0

holds true if y3 ≥ y4.

To get the last restriction of the proposition, we consider an equality

y0 + p(x2 + a) + p(x2 + 2a) = 1
1−a(y1 + y5).
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Since x2 + a ∈ [a, 1− a], then

p(x2 + a) = y2 + (y3 − y2)x2+a−a
1−a−a = y2 + (1− a)(y3 − y2).

Since x2+2a = (1−2a)(1−a)+2a = 2a2−a+1 = 5a−1 ≈ 0.91 > 2−3a ≈ 0.85,

then x2 + 2a ∈ [2− 3a, 1], and

p(x2 + 2a) = y5 − y5
5a−1−2+3a

1−2+3a
=

2− 5a

3a− 1
y5.

Thus

y0 = 1
1−a(y1 + y5)− y2 − (1− a)(y3 − y2)− 2−5a

3a−1
y5 =

= 1
1−a( 1

1−ay2 − y3)− y3(1− a)− ay2 + ( 1
1−a −

2−5a
3a−1

)y5 =

= (( 1
1−a)2 − a)y2 − y3( 1

1−a + 1− a) + 2−5a
(3a−1)(1−a)

y5 =

= ( 1
1−a + 1− a)(y2 − y3) + 2−5a

(3a−1)(1−a)
y5.

Finally, y0 ≥ 0 if and only if − 2−5a
(3a−1)(1−a)

y5 ≤ ( 1
1−a + 1 − a)(y2 − y3), which

leads to y5 ≥ 11a−4
2−5a

(y3 − y2) (2− 5a, 3a− 1, 1− a > 0), and equals to

y5 ≥ 11a−4
2−5a

(y3 − y2) = 11a−4
2−5a

(y3 − 1
1−ay3 + y4) = 11a−4

2−5a
y4 − 29a−11

8a−3
y3.

�

Notice that functions in Fig. 12 differ a little from those in Fig. 10 and 14:

p∗3(x) is slightly changed in both cases. Such change leads to great oscillation

and (or) unboundedness of p(x). We formulate here the following questions.

Question 4. Explain such ”bad” behavior of function p(x). Are there lo-

cally non-linear densities (for them we need to check conditions (9)–(10), non-

negativeness and integrability of p(x))?

Question 5. How can we provide α1(x) ∈ [0, 1] in cases above (α1(x) is derived

from equation (4))?

In conclusion, consider the case when α is an endowment by characteristic

functions of sets of IFS (6) mask. Let M = {M1,M2} be the IFS mask:

[0, a) ⊂M1 and (1− a, 1] ⊂M2, M ′
1 = M1∩ [a, 1− a] and M ′

2 = M2∩ [a, 1− a]

are arbitrary (M1 ∩M2 = ∅, M1,M2 ∈ B).

Let αi(x) = χMi
(x), i = 1, 2. Condition (4) for n = 2 turns into

α1(x) = 1
p(x)

(p(x− a) + p(x)− 1
1−ap(

x−a
1−a )), ∀x ∈ [a, 1− a). (16)

On the set M1, α1(x) ≡ 1, and (16) implies

p(x− a) = 1
1−ap(

x−a
1−a ), x ∈ [a, 1− a) ∩M1.



ON INVARIANT MEASURE OF ONE 2-TRANSFORMATION 19

Similarly, on the set M2, α1(x) ≡ 0, and (16) yields

p(x− a) + p(x) = 1
1−ap(

x−a
1−a ), x ∈ [a, 1− a) ∩M2.

One can see that condition (7) splits into two (as sketched in Fig. 15):

on [a, 1− a) ∩M1

{
p(x− a) = 1

1−ap(
x−a
1−a ),

p(x) + p(x+ a) = 1
1−ap(

x
1−a);

(17)

on [a, 1− a) ∩M2

{
p(x− a) + p(x) = 1

1−ap(
x−a
1−a ),

p(x+ a) = 1
1−ap(

x
1−a).

(18)

M1
ç

M2
ç

Figure 15. Scheme of conditions (17) (above) and (18) (below).

Thus we can introduce the following scheme of construction p(x), which is

slightly changed version of the one above.

Consider the following marks on the X-axis: xk = a(1−a)k, x∗k = 1−a(1−a)k,

k ≥ 1.

x2
*x1

*1-aax1 10 x2x3... x3
* ...

p0
*p1 p1

*p3 p2
*p2p3 p3

*... ...

Figure 16. Construction scheme for density p(x), extra inter-

vals marked, a = 3−
√

5
2

, case of n = 2.

• Fix functions p∗0, p
∗
1 ∈ L1, p∗0, p

∗
1 ≥ 0, arbitrarily, and define

p(x) =


p1(x) = 1

1−ap
∗
0( x

1−a)− p∗1(x+ a), x ∈ (1− 2a, a],

p∗0(x), x ∈ (a, 1− a],

p∗1(x), x ∈ (1− a, 2a].

• By induction on k ≥ 2, define

p(x) = pk(x) =

{
1

1−apk−1( x
1−a), x ∈ (xk, xk−1], x+ a ∈M ′

1,
1

1−apk−1( x
1−a)− p∗0(x+ a), x ∈ (xk, xk−1], x+ a ∈M ′

2.
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• By induction on k ≥ 2, define

p(x) = p∗k(x) =

{
1

1−ap
∗
k−1(x−a

1−a ), x ∈ (x∗k−1, x
∗
k], x− a ∈M ′

2,
1

1−ap
∗
k−1(x−a

1−a )− p∗0(x− a), x ∈ (x∗k−1, x
∗
k], x− a ∈M ′

1.

• Fix values p(0), p(1) ≥ 0 arbitrarily.

Thus function p(x) is completely defined by its values on (1 − 2a, 1 − a],

which are defined by functions p∗0 and p∗1.

Here next question arises.

Question 6. Under which conditions p(x) ∈ L1, p(x) ≥ 0? Is it possible to

construct such function for any mask M?

The examples of two masks (see Fig. 17) are the partial answer to it. In

these examples masks M are connected with partition structure of interval

[0, 1] over iteration process of density construction. Namely, if M1 = [0, 4a−1),

M2 = [4a− 1, 1] (4a− 1 = x2 + a), p1 = c ≥ 0, p0 = 1
1−ac, then one can show

that p∗1 = 1
1−ac, p(x) ≡ 0 outside [1 − 2a, x∗2]. If M1 = [0, a) ∪ [4a − 1, 1 − a],

M2 = [a, 4a−1)∪(1−a, 1], p1 = p0 = c, then p∗1 = (1−a)c, p∗2 = c, p(x) ≡ 1
1−ac

outside [1− 2a, x∗2].

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

0.2 0.4 0.6 0.8 1.0

0.8

1.0

1.2

1.4

1.6

1.8

Figure 17. Graphs of invariant measure densities with mask

endowment (n = 2) (see text): M1 = [0, 4a−1), M2 = [4a−1, 1],

c = 1.2 (left) and M1 = [0, a)∪ [4a− 1, 1−a], M2 = [a, 4a− 1)∪
(1− a, 1], c = 1.2 (right).

We haven’t found an example of density p(x) for arbitrary mask (for in-

stance, that in Fig. 7): the function constructed had negative values, un-

bounded and (or) oscillated greatly.
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3. The case of n > 2

In conclusion of the paper, we introduce one of the possible construction

schemes for density p(x) for all n ≥ 2 and any a,

1

n+ 1
< a ≤ 1

n
. (19)

Consider the following variables (see Fig. 18):

xk = (1− na)(1− a)k−1, k ∈ Z.

Lemma 2. There exists a unique number K ∈ Z, K ≤ 1, such that xK < a,

xK−1 ≥ a.

Proof. Since xk = (1− a)xk−1, it is sufficient to consider the chain of inequal-

ities:

(1− a)a ≤ (1− na)(1− a)k−1 < a,

(1− a)a

1− na
≤ (1− a)k−1 <

a

1− na
,

log1−a
a

1− na
+ 1 ≥ k − 1 > log1−a

a

1− na
. (20)

According to (19), we have a
1−na > 1, hence log1−a

a
1−na < 0. Then (20)

completes the proof. �

x1x2 x0 xK xK-10 1

p1p2 gpK

...

...

...

...

... a

1-na

Figure 18. Construction scheme for density p(x) in the case of

arbitrary n ≥ 2.

Now we introduce the following scheme to construct p(x), with equations (2)–

(3) satisfied.

• Fix g ∈ L1, g ≥ 0, arbitrarily, and define

p(x) = g(x) on (a, 1].

• For k = K, define (see formula (3))

p(x) = pK(x) = 1
1−a

(
g( x

1−a) +
n−2∑
i=1

g(x+ia
1−a )

)
−

n−1∑
i=1

g(x+ ia), x ∈ (xK , a].
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• By induction on k = K + 1, . . . , 1, define (see (3))

p(x) = pk(x) = 1
1−a

(
pk−1( x

1−a) +
n−2∑
i=1

g(x+ia
1−a )

)
−
n−1∑
i=1

g(x+ia), x ∈ (xk, xk−1].

• By induction on k = 0, 1, . . ., define (see (2))

p(x) = pk(x) = 1
1−a

(
pk−1( x

1−a) +
n−1∑
i=1

g(x+ia
1−a )

)
−

n∑
i=1

g(x+ia), x ∈ (xk, xk−1].

• Fix value p(0) ≥ 0 arbitrarily.

Here the following question appears.

Question 7. Under which conditions p(x) ∈ L1, p(x) ≥ 0? Under which

conditions α1(x) ∈ [0, 1] (α1(x) is derived from (4))?

Obvious ”mirror” change of this scheme is shown in Fig. 19 (replacing xk by

x∗k = 1− xk), compare with lemma 4.

x1
* x2

*x0
*xK

*xK-1
*0 1

p1
* p2

*g pK
*

...

...

...

...

...1-a

na

Figure 19. ”Mirror” construction scheme of density p(x) in the

case of arbitrary n ≥ 2.

4. Conclusion

Section 1 contains motivation part. It overviews previously derived criteria

of measure invariance and some related results, as well as connection between

endowment and mask. In Section 2 we consider the case of a = 3−
√

5
2

, and ex-

ample of mask is given. Section 3 introduces construction scheme for densities

with arbitrary a ∈ (0, 1
2
].

The author expresses gratitude to K. B. Igudesman for drawing attention to

the connection between masks and endowments.
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