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1. The primitive and the indefinite integral

The definition 1. The function F(z) is called the primitive of the function
f(x) on the interval (a,b), if in all points of this interval equality is executed
F'(z) = f(z) (wm dF(z) = f(x)dx).

The theorem. If the function F'(z) is the primitive of the function f(z) on
(a,b), the ensemble of all primitives for the function f(x) defines by the formula
F(x) 4+ C, where C' — is the permanent number. The inverse proposition is that
any two primitives differ from each other on a constant summand.

The proving. Under the circumstance F'(z) — the primitive of the function
f(x),i.e. the condition

is carrying out. Then for any constant number C' the equality
(F(z)+C) =F(2) + C"=F'(z) = f()

takes place i.e the function F'(z)+ C is the primitive. Let F{(x) — to be another,
different from orymana F'(x), the primitive of the function f(z), i.e. Fi(z) = f(z).

Then for any = € (a,b) we carry

(Fi(x) - F(2))' = Fi(z) — F'(a) = f(x) - f(x) = 0

This means that Fi(x) — F(z) = C, tae C = const. The theorem is proved.
The definition 2. The ensemble of all primitives F'(x) 4+ C' for the function
f(x) is called the indefinite integral from the function f(z) and designates by

/f(q:)dx

/f(zz:)dx = F(x)+ C,

symbol

Thus, by the definition

if F'(x) = f(x).
Accordingly, the indefinite integral itself represents the assemblage of functions
y=F(x)+C.

The diagram of each curve (primitive) is called the integral curve.



2. Internals of the indefinite integral

1) Differential from the indefinite integral equals to integrand expression,

whereas derivative from the indefinite integral equals to integrand function, i.e.

d(J/(f(x)dx):z f(z)dz,

g/ﬂmmy:ﬂ@.

The proving.
d(/ f(z)dr = d(F(z) + C = dF(x) + d(C) = F'(z)dx = f(x)

(/f@MWz%ﬂ@+CY=F@%H7=ﬂ@-

Due to this trait verity of integration is proved by derivation.
2) The indefinite integral from differential of a certain function equals the sum

of this function and derivative invariable i.e.

/dF(x) = F(x)+ C.

The proving.

/ dF (z) = / F'(z)dx = / f(x)dw = F(z) + C.

3) The constant factor can be carried out of the integral sign.

/ozf(a:)dx = oz/f(x)dx, (1)

a = const # 0.

The proving. For proving we take differentials from the left and the right parts
of equality (1)
il [ af(@)d) = af(a)ds,

d(a/f(x)da:) = ad(/ f(x)dx) = af(x)dx.

Reciprocally the following quality is proved



4) The indefinite integral of the seme (remainder) of two functions equals the

sum (remainder) of their integrals, i.e.

/(f(l“)ig(l“))dx:/f(x)dxi/g(x)da:.

The method of mathematical induction easily proves validity of the given

quality for the finitesimal number of summands.

3. The table of the basic indefinite integrals

The table of the basic indefinite integrals assembles with the use of the table of

derivative elementary functions. For example, it is known that (") = (n+1)z2",
n+1
s

of the indefinite integral the following equality takes place

eciimn # —1. Herefrom follows that ™ = (£—=)’. Consequently with the definition

1
"dr = —1).
/;U x n+1+0,(n7é )

Analogically the rest formulas of the following table come out.

n _xn—i-l
1. [a"dx = .

+C,(n# —1)
2. [% =In|z|+C,

3. [ sinzdx = —cosx + C,

4. [ cosxdx = sinz + C,

5. [ -2 = tgx + C,

cos“x

6. dv_ — _ctgr + C,

7. [e*dr =e*" + C,

8. fof”dx:a—z%—C,

lna

9. [ 1?_”;2 = arcctgx + C,

10. [ \/% = arcsinx + C,




11. [ shadx = cha + C,
12. [ chaxdr = shx + C,

13. [ 4 =the + C,

ch2x

14. [ = ctha + C.

sh2x

4. Integration by the method of variable’s
replacement (the method of substitution)

Integration by the method of variable’s replacement consists in leading-up of
a new variable of integration, which helps to depress to the new integral, which is
tabular or depresses to it.

Let’s compute the integral [ f(z)dz. We'll make substitution

r = (), (1)

wherep(t) — is a constant function, which has constant derivative ¢'(t). Then
when derivation is completed we receive (1)dx = ¢'(t)dt. Let’s prove that the

following equality occurs

/ f(x)ds = / F((t) ! (1)t 2)

To prove the ratio (2), it’s enough to show that differentials of both parts are
equal. Let’s differentiate the left part (2)

d( / f(2)d) = f(x)da.

But since x = ¢(t), then dx = ¢'(t)dt. It gives

il [ $a)ds) = f()dz = f(p(0)¢ Ot ®)

Let’s differentiate the right part of the ratio (2)
d(/f[@(t)]w'(t)dt) = fle@®))¢ (t)dt. (4)
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Ratios (3) and (4) prove validity of formula (2).

After we've found the integral of the right part of the equality we need to
proceed from new variable of the integral ¢ back to variable z (they say, that
reverse substitution is needed here). Sometimes it’s reasonable to use formula (2)
from the right to the left.

The 1st example. [

dx
Va2
The answer. Let’s suppose © = az, we find dr = adz, using formula (2)

dx B adz B dz , c
Vi Ve e
Returning again to variable z, we receive z = ¢.
x
= arcsin— + C.

/ dx
Vo= a

The 2nd example. [ 2z —3da.
The answer. Let to be the next v/z — 3 = ¢, then comes the following z = ¢*> + 3,
dxr = 2tdt. That’s why

/xﬂdaz = /(t2 +3)t - 2tdt = 2/(t4 + 3t%)dt =

U 2 5
:2/t4dt+6/t2dt:2g+6§+02g(x—3)2+2(x—3)

ofw

+C.

The 3rd example.

r=L dt 1
/cosma:da:: < ”5115) :/cost— = —/costdt:
dr =% m m

1 1
= —sint+C = —sinmx + C.
m m



5. Integration in parts

Let v = u(z) mw v = v(x) to be two functions, which have two constant

derivatives. It’s known that the differential of product uv is computed by formula
d(uv) = udv 4 vdu.

Integrating both parts of the last equality

/d(uv) = /udv+/vdu
/udv = /d(uv) — /Udu,

and because of [ d(uv) = uv, (the second quality of the indefinite integral), we

/udv = uv — /vdu. (5)

Formula (5) is called formula of integration in parts. This formula gives us an

or
receive

opportunity to depress computation of the integral f udv to computation of the
integral [ vdu, which may occur to be easier than the primitive. Sometimes we
can use this formula of integration in parts several times.

Let’s designate some integral types, which convenient to compute by the

method of integration in parts.

1. Integrals of type

/P(x)ekx dx, /P(x)smkxdx, /P(x)cos kx dx,

where P(z) — multinomial, k& — number. It’s convenient to distribute u =

P(x), whereas dv — to denote all other efficients.

2. Integrals of type

/P(w)arcsinﬂcdw, /P(:I:)arccosxdx, /P(w)ln:z:dx,

/P(:U)arctg:cdx, /P(:(:)arcctg:nd:v,

is convenient to suppose P(x)dx = dv, and for v to mark all other multipliers.

8



3. Integral of type
/ e*sin fx dr, / e*cos Bx dr

where o, 5 — numbers.

The 1st example.

/(:1:—|—2)cosxda::<u T+ v =cosw x):

du = dx v:fcosxd:vzsinx

= (z+2)sinx — /sz’nazd:c = (z+2)sinz + cosx + C.

The 2nd example.

= dv = (32® + 1)d
/(3m2+1)lnxdx=<u e ! (az+)x>:

du:“i%—:r v=a3+2x

3

=(x3+x)lnx—/(x3+a:)d—x=(x3+x)lnaj—%—x+a
x

The 3rd example.

/e‘“”cosbxdw:<u:€ dvzcosba:dx>:

du = ae®®dx v = %sz’n bx

:e—sinbx—%/smbxemdaﬁ: ( e dv = sinbr dv ) =

b du = ae®dx v = —%cos bx

et a, 1

. ax g ar _
= Tsmba: — E(_Ee cos bx + 2 /e cosbrdr)+C =

axr

" sinbr + eosh a2/af brdz + C
= —S1n ox —€ COSOX — —— € COoS0x ax .
b b 2

axr eam . a axr a2 axr
e"cosbr dr = Tsm bxr + ﬁe cos bxr — 72 e cosbx dx + C.
CL2 ax

(1+ ﬁ) / e"cosbr dr = eb—Q(b sinbx + a cosbx) + C.

axr

e cosbr dr = (bsinbx + acosbx) + C.

a? 4+ b2



6. Computation of integrals with the help
of recursive formula

Let’s derive formula, which allows for any k& € N to express [ through I ;.

dx 1 a® + x? — x?
L= | ———— == dr =
(xQ n a2)k a2 (9[;2 4 a2)k;
B l/ dx B i/ x2dx B
o a2 (332 + a2)k—1 a2 (xQ + a2)k: T

1 1 ridx
=2 | e
a a’? ) (x?+a?)

For the integral [ (xfi%)k let’s apply the method of integration in parts
/ rxdx _( u =z, du = dx >_
(x2 + a2)k dv = %’ v = _2(k—1)(x12—|—a2)k—1

_ x 1 dx B
- _Q(k —1)(2? + a?)F ! T 2(k — 1) / (22 + a2)h-1 =

xT 1

T D@ @ ek -

consequently

L1, 1] v 1
TR @ 2k D@2+ e 2(k— 1

Grouping terms, containing I, we’ll receive

2k —3

I=a2(k — 1)+t 1, ..
r = x2( )(z* + a) +2a2(k:—1)k1

This is the recursive formula.

The example. It is required to calculate

dx
L= | —.
? /(m2+1)3

Let’s express I3 through Is:

2-3—3 3
x x L3

Iy =— L=—07"
T B D@+ 1P 23102 2+ 1E 1
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Let’s substitute Iy B I3, finally we’ll receive

b ‘ + 5T + J t +C
= —arctqgx .
ST 42112 8@t 8

7. The simplest rational fractions and their
integration

Integration of any rational fraction reduces to the integration of regular fractions.

Definition. Types of the regular rational fractions

J A

[I %(k’ - 2, 3, ),

111. xff};ﬁ (the roots of the denominator are complex, that is D < 0),
IV. (Q‘f;—?;fw, (k =2,3, ..., complex denominator’s roots),

where A, B, a, p, ¢ — are real numbers, which are called the simplest rational
fractions of I, II, III, IV types.
Integration of the fractions of the I and the II types doesn’t make any difficulty:.
IfAd:c—Af =) — Aln|z — a| + C.
II. f L arde = Afa:—a ) Rd(x — ):—WjLC.
Let’s proceed to the integration of the rational fractions of the III type.
II1. [ B gy,

22+prtq
Let’s examine the denominator and intercept a complete square

2

2
x2+px+q: <x+g) + {q—%].

We'll replace the variable ¢t = z + £, dx = dt, 2? + px + q =t + a®.

A A(t—12 B
/x—erdx:/ (t—5)+ dt —
22 +pxr+q t2 + a?

1
= {dt2 — 2tdt = tdt = §dt2} =

/ d(t* + a?) B_@/ -
B 2+ a? 2 2+ a2

11




A Ap\ 1 t
= —In|t* +a’| + | B - P —arctg — + C.
2 2 )a a

Making the reverse substitution

Axr+ B A
/Ldaz = 5[71(932 + px + q)+

x>+ pr+q
A
(B=%) gy 25
+ arctg + C.
P’ P’
4 4

Let’s examine the integration of the fractions of the IVth type.

Iv. | ng)—;fq)kdx. Let’s bring in,as in the III case, a new variable to

t=x+ =,

dx = dt,

2
xZ—I—px—i—q:t?—l—aQ, F;LeaQZq—%

Consequently

/(:U2ixp_;:—fq)’“ :A/ﬁJr (B_%>/(t2_‘c_l—ta2)k' (1)

The first of the integrals’ ratio (1) is easily compute

/ tdt 1/ d(t® +a®) _ 1/(752 +a?) R + a?) =

@raF 2] @ra)k 2

1
= - +C.

2(k — 1)(2 + a2)h 1

For the integration of the second fraction we are going to apply the recursion

formula we’ve inducted earlier.

/ dx B 1 T N 2k — 3 / dx
(22 +a2)k  2a2(k—1) (22+a®) 1 2a2(k—1) ) (224 a?) 1

The example.

/ r=1 (P23 ()2
(22 +20+3)2 " \t=z+1 = de =dt)

[ t=2 . [d{P+2) -
- [ e

12




1 1 ) 1 t +1/olt B
2 249 2.2 2492 2.2/ 24+2|

1 1 11 1 . t+ 1 t+1 1 . t+
=t ————arctg—=-+c= —=- — arctg — +c¢ =
2 242 2 242 2 g\/i 2 124+2 22 g\/i
1 T+ 2 1

: x+1+0
=—=" — arctg ——— :
2 22+2c+1 2¢/2 J V2

8. Transformation of rational fractal into
the simplest fractions

Let’s show, that we can transform any regular rational number into the sum
of the simplest fractions.

Here the regular rational fractal % is given. We'll suppose, that indexes of
multinomial included in this fractal are real numbers, and that the given fractal
is the irreducible (i.e. the numerator and the denominator don’t have common
roots).

The theorem 1. If the of the regular rational fractal looks like (z —a)*Qy (),
where @1(x) -is an indivisible for z — o multinomial then we can represent this
fractal as the sum of two right fractals

P(x) _ A N Pi(z)
(z —a)Qi(z)  (z—a)f  (z—a)"'Qi(x)

where A — is a certain number.

(2)

The proving. Let’s examine the difference

(¢ —a)f@i(z) (r—a)t (2 —a)C(z)

The fraction in the right part (3) is correct, because it is the difference of two

regular fractals. We have to prove, that the difference (3)equals to the second
fractal, which we see in the right part (2).

Let’s define A so as the multinomial P(z) — AQ1(x) will be divided for = — «
without the residual. It’s possible when « is multinomial’s root, i.e.
P(a)
Q1(@)

Pla) — AQ1(a) =0 = A=

13



Q1(a) # 0 (by theorem’s condition). This means, that A is determined ambiguously,
multinomial P(z)— AQ1(x) divides without the remainder for z — . Designating

quotient from division through Pj(zx), we’ll derive
P(z) — AQ1(z) = (v — o) P ().

Consequently
P(x) A Pr) - AQ:i(z) Pi(z)

(- a)fQi(x) (z—a)f  (z-a)Qi@) (z-a)"'Qi(2)

Thus, the theorem is proved.

Corollary. To the regular rational fractal

Pi(x)
(2 — )= 1Qy(z)

we can apply the same reasoning. That’s why, if the denominator has the root

x = « , which is multiple to k, then we can write

P((ﬁ) . A Al o Ak:—l Pk(x)
Q(z) (:U—oz)k+ i +:1:—04+Q1(:z:)’

where g’i(é% — is a regular irreducible fractal.

(z —a)

The theorem 2. Let square trinomial 2 + px + ¢, which doesn’t have real

roots, is a part of denominator’s expansion Q(x) of the regular rational fractal
P(x)

0l in the power m.

Q(z) = (2* + pr + q)"Qa2(x).

Then we can find such real numbers as A u B, that has identity

P(x)  Ax+B Fi(x)
Q(z) (24pr+qm (24 pr+q)m'Qx(z)
Fi(x)

where ( — is the regular rational fractal.

22 4+pr+q)" " Q2(x)
The proving. For proving let’s examine the difference

P(x) Ar+B P(z) Az + B

Q(z) (2+pr+q™ (22 +pr+q)"Qa(z) (2+pr+q™

_ Pla) — (Ar 1 BQy(2)
(22 4+ px + ¢)"Qa(x)

14



P(z)—(Az+B)Q2(x)
(22+px+q)mQ2(x)
assemble numbers A u B so as the multinomial

Fl (Z‘)
22 4pr+q)m Qo (x)

and we’ll prove, that the difference equals to (

P(x) = (Ax + B)Qa(x) (1)

will be divided without the remainder into 2% + px + ¢. For this case it’s required

and sufficient for
P(z) — (Az 4+ B)Q2(x) =0

to have the same roots o & i3, as the multinomial 2% + px + ¢. Consequently
Pla+1if) — [A(a+iB) + B]Q2(a+i3) =0

or

: P(a+1ip)
Ala +if)+ B = ————_
L N )
where 52 ((0& fffﬁ)) — is the definite finite number, which can be written as k + 7L,

where k u L — are real numbers. That is

Ala+1i8)+ B =k +iL,

then
A-a+B=k, Ag=1L.
Consequently
kB — La L
B=— A=-—.
B B

In this values A and B multinomial (1) has as the root the number « + i3, and
consequently it has and the adjoint number a—:3. But in this case the multinomial
(1) divides without the remainder by differences x — (a 4+ i) u = — (a — i),
and consequently on their product 22 + pz + ¢. Denoting the quotient of division

through F'(x), we’ll receive
P(z) — (Az 4+ B)Qy(z) = (2 + px + q)F(z),

then
P(z) — (Az + B)Q2(x) _ F(x)

(22 +pz + q)"Qa(x) (22 4 pr + q)"1Qa(7)
that’s what we need to prove.

15



Consequence. For the fraction

F(z)
(22 + pr + q)" Q2 (x)

the results of the theorem can be applied 2. we can also consequently find out all
the simplest fractions, corresponding to all denominator’s roots.

Thus analyzing theorems 1 and 2 we come to the following result. If the

denominator of the fraction Q(z) can be presented as

Q)= (x—a)(x—p)... (2 +pr+qt.. . (2*+lx+5s),

then the fraction % can be produced as

B
=P @-pp1Ta-g

Mx+ N n Mz + Ny b Mu_lx+Nu_1+
(24 pr+ g (22 +pr+ q)rt 22+ pxr +q
Pr+Q | Par+ QO
(22 + lx + s)* 2?2+lr+s

_|_

9. The method of indefinite indexes

The method of indefinite indexes is one of the simplest methods of finding
indexes in transformation of regular fraction into simple fractions. Let’s clarify
appliance of this methods in the following examples.

The 1st example. To transform into the simplest fractions

2 +3x—1
(x—1)2@24+x+1)

The answer.
> +3rx—1 A B Cr+d

(x =1 (x> 4+z+1) (a:—1)2+x—1+9:2—|—:1:—|—1
16




B+C = 0,
A-20+4+D = 1,
A+C—-2D = 3,

| A-B+D = -1,

(A = 1,

2

!5 =%

C _2
37

4
\D — —g
2+ 3x—1 1 2 1 1 2¢ +4

(x —1)2%(22+2x+1) :1;—1+3 (x—12 3 224242
The 2nd example. To transform into the simplest fractions

24+ r+1
(22 + 12 (22 +2+2)

The answer.

2+ r+1 _A:z:+B Cx+ D Exr+ F

(2 +1)% (x> 4+ 2z + 2) (:132—1—1)2Jr 2+ 1 +5132—|—$—|—2

;

C+FE =

C+D+F =
A+3C+D+2F =
A+B+C+3D+2F =
2A+B+2C+D+FE =
2B+2D 4+ F =

— == O O O

(4 —

MmO QW
I
=

17



10. Integration of the rational fractions
by the method of indefinite indexes

Considered material allows us to state the general rule of rational functions’
integration.
1. If the fraction is indefinite, then it is presented as a sum of a multinomial and
a regular fraction.
2. Regular fraction’s denominator is expansioned into factors.
3. Regular rational fraction is presented as a sum of the simplest fractions.
4. To integrate the multinomial and the obtained sum of the simplest fractions.
The example. To find the integral

/x5+2x3+4x+4
I =
xd 4+ 23 + 222

X.

The answer. Under the integral’s sign is the indefinite fraction. Let’s intercept

its integer. We derive

x° + 223 + 4o + 4 ) Ax3 + 4> + 4z + 4
= X —
xd + 223 + 222 x4 + 23 + 222

Let’s expansion the real rational fraction into the simplest fractions

4:U3+4x2—|—4x+4_4x3—|—4x2—|—4aj—|—4_A B Cx+ D

d 203 + 2202 z2(2? 422+ 2) _P+x+x2—|—2x—l—2’

4a° + 42 + 4o + 4 = A(2® + 22+ 2) + Br(2? + 2z + 2) + (Cx + D)a?,
4% + 42 +4x+ 4= (B+C)2° + (A+ 2B + D)z° + (2A + 2B)x + 2A.

( B+C =4, [ A = 2,
A+2B+D = 4, ) B = 0,
QA+2B = 4, | C = 4,
k 24 =4, | D =2
Thus
4x3—|—4az2+4a}+4_ 2 n 4o + 2
2t 223 + 222 a2 2242042
X+ 20° + 4+ 4 2 4o + 2
—r 24
xd + 223 + 222 2 242 +2

We are integrating the obtained equality

/ 2+2+ Adx + 2 q x? 5 2+/ Ay + 2 p
x — — 4 ——|dr=— 20— — —— dx
2 x242x+2 2 x 2 4+2x+2

18



4 2
/de:QZn(x2+2x+2)—2arctg(x+1)+C.

2+ 2w + 2
Consequently,
z? 2 9
I = ?—Zx———l—2ln(x +2x +2) — 2arctg (x + 1) + C.
x

11. Integrals coming out of irrational functions

Integral is evaluated by elementary functions not from each irrational function.
Let’s examine those irrational functions, integrals out of which with the help of
method of substitution depress to integrals of rational functions, and consequently
they integrate till the end.

I. Let’s examine the integral

/R(x, zn, -, xs)de,

where R — is a rational function of its arguments.
Let k — to be the common denominator of fractions =, .-, . Let’s carry out
the substitution

z=1t" dr=kt"dt

Then eachfractional power x is expressed throughwhole power,and consequently,
the integrand function transforms into the rational function.

Example. We must compute

Vadz
Vad +1
1

The answer. The common denominator of fractions 5 and % is 4, therefore let’s
perform the substitution x = t*, dz = 4t3dt, then

Vzdz 2443 dt todt ) t
=15 =4 [ z— =4[ (" — 3 dt =
Vs +1 t3+1 3+ 1 B3 +1

3 4 47, s
:4§—§zn|t3+1|+0:§[@—zny\/ﬁﬁﬂ+c.
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IT. Let’s examine the integral of the following type

/R . ar +b " ar + b s
"Nex+d) "\Nex+d

where R — is a rational function.

dx,

This integral comes to the integral of a rational function by the method of

substitution.
ar + b

cr +d
where k& — is the common denominator of fractions o, -+ |

— ¢k

w3

Example. We need to compute

1+ "
/—Hde
1+

The answer. We'll substltute = 12, dv = ~—dt. Consequently,

(14—1&2

1—x
L4/ 1+t —4¢
14—1&2

2+t t—1
:—2/ +dt:—2/ dt =
1+ ¢2 24+ 1

= 2t —In|t* + 1| +2arctgt +C =

1— 11—
= -2 —x—ln\1+x\+2arctg\/—x—|—0.
1+x 1+

12. The differential binomials’ integration

The expression of type
2™ (a + bx")Pdx (1)

where a, b, m, n, p — are constant numbers, is called a differential binomial.

The theorem. The integral from the differential binomial

/:I:m(a + ba")Pdx, (2)
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if m, n, p — are rational numbers, comes to the integral out of the rational

function, and consequently, it’s expressed through the elementary functions in

three following cases

1) p — is the integer;

2) mT“ — is the integer;

3) L 4+ p — is the integer.

The proving: Let’s make a replacement of the variable in the integral (2)

=z
x=1/z
1
do = —zv 'dz
n
Consequently,
m ]. 1
/a:m(a + ba")Pdx = /zn(a +bz)P =z tdy =
n
=— [ zn a+b2)Pdz=— [ 2%(a+ bz)Pdz (3)
n n
where ¢ = mT“ — 1. Now let’s examine the different cases. 1) Let p — to be the

integer, ¢ — is the rational fraction (¢ = £). Thus, the following replacement of

the variable takes place

zs =1
z=1"
dz = st*~'dt
%/zz(a + b2)Pdz = %/tr+8_l(a + bt*)Pdt

2) Let mTH — to be the integer, then ™ — 1 — ig also the integer, p — is the

n

rational fraction (p = £). In this case by the variable’s replacement

® =

(a+bz)s =t
a+bz=1t°
t* —a
b
Sts_l

z =

dz = dt
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the integral (3) comes to the integral from the rational function

1 . S 5 —a\?
- q b Ed - tT+S—1dt
n/z (a+bz):dz — ( 7 )

3) LetmTH+p—tobetheinteger. Butthenm‘TH—1+p:q+p—isthe

integer. We have to transform the integral (3)

p
/zq(a+bz)pdz _ /Zqﬂ? (ﬂ) dz
z

where p + g = [ — is the integer, p = © — is the rational number. Then

1 1 g
—/zq(a—i—bz)pdz: —/zl (a—l—bz) dz
n n 2

By making the replacement

a—l—bz_
— =

tS

the given integral comes to the integral from the rational function.

The great Russian mathematician P.L. Tchebishev have proved, that if m, n, p
—are the rational numbers, which don’t obey to any of the stated above three cases,
then the integral from the differential binomial doesn’t express in the elementary
functions.

The 1st example.

o=

Here p = —1 — is the integer. We'll replace

win
win

-1 3 3
/x_ (1 +x ) dx = /2_1(1 + z)ézédz = 5/2_%(1 + 2) .
Now we’ll make the replacement
22 =1, dz = 2tdt,

3 | 3 dt
— _51 -1 — — _1]_ 2_12 = / e
2/z (14 2) dz 2/1& (14t*)""2tdt =3 P

=3arctgt + C = 3arctg\/z +C = 3arctg/z + C.
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The 2nd example.

$3 1
— = dr= [ 231 - 2®) " 2dzx
/\/1—:162 / ( )
1 m—+ 1

2 n
5132:2, 1—z=1¢%.

= 2 — is the integer

The answer: —Vlg_ﬁ(—xQ —2)+C.

The 3rd example.

(14 2% “2dy
/x2\/1+x3 /
3 1
m=—-2, n=2, p:—§, Eer:—Q—istheinteger
n

1
1 2
x2:z, < —|—z> = 1.
z

. V1422 oz
The answer: T e + C.

13. Integrals of type [ R(z, Vaz?+ bx + c)dx.
Eiler’s substitutions

Let’s examine the integrals of type

/R(:c, Vaz? + bz + ¢)dx (1)

where R — is the rational expression from = u vaz? + bx + c.

Such integrals come to the integral from the rational function with the help
of one of Eiler’s substitution.

1. The first Eiler’s substitution. It’s applicable if @ > 0. In this case we

suppose

Var2+br+c=+va- -z +t.

For determinacy we 'll take before y/a the plus sing. Then

ar? + bz + ¢ = ax® + 2\/axt + 12
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wherefrom )
t“—c

" b—2at

(it means that dx is rationally expressed through t¢). Consequently,

X

t? —c
24} = t = — +t
Vaz? + br + ¢ = az + \/ab—Z\/EtJr’

i.e. vVar? + bx + ¢ — is also the rational function from raxxe ¢t. Consequently, the

integral (1) comes to the integral from the rational function from t.

2. The second Eiler’s substitution. If ¢ > 0, then we consider

Vaz? + bz + c =zt +/c.

Then
az? 4+ bx + ¢ = 2°t* + 2wt /e + ¢

(For determinacy we take the plus sign before the root). Herefrom

i.e. x — is the rational function from e, and this means the same for dr,and
consequently the integral (1) comes to the integral from the rational function
from ¢.

3. The third Eiler’s substitution. It’s used only if the trinomial az?+bx+c
has the real roots. Let o and 5 — to be the roots of the trinomial az? 4+ bx + c.

We suppose

Vaz? +bx +c= (z - 2)t.

Since ax? + bx + ¢ = a(z — a)(x — ), then

alzr —a)(z — B) = (x — o*t?,

alx — B) = (v — a)t.

Herefrom we find out 2 as the rational function from ¢



[t means that the integral (1) comes to the integral from the rational function
from ¢.

Observation 1. The third Eiler’s substitution is used when a > 0 and
when a < 0.

Observation 2. Integrals of type

Mx+ N
Vax?+bxr+c

dx

can be found with the help of the first or the third Eiler’s substitution. However

computation of these integrals easier to do with the following substitution:

L
Z = ax -
2

(az 4+ % — is § the derivative from az® + bz + ¢).

Mx+ N J A / zdz LN / dz
x = - B —
Var? +bxr +c ! vaz?+m ! vaz?+m

The first integral comes to the integral from the power function, and the second

under the circumstances a < 0 comes to arc sine. With ¢ > 0 we’ll examine the
answer in the next example.

The example. We should compute the integral

/ dx
VrZz+ec

The answer. Since here we have a = 1 > 0, then the first Eiler’s substitution

is used
Vai+cec=—x+1t,
:L‘2—|—c:x2—29:t+t2,
2 — ¢ t2 4+ ¢
= dr = ———dt
T Ty T
\/T 2+ ¢
T c=
2t
We receive

t+cdt dt
2
/m /ié+c = | 3 T inlrrvaitd o

25



The example. We need to compute the integral

/ T
Va2 +3z —4

The answer. Since 2 + 3z — 4 = (x + 4)(x — 1), then we suppose

Viz+4)(x—1) = (x+4)t

Then
(x+4)(x—1) = (x +4)*
r—1=(v+4)t
1+ 4¢? 10t
x:—+ , dx:—o dt,
1 —¢2 (1 —1¢2)2
1+ 4¢2 5t
Ve +4)(z—1)=(z+4)t = (1_t2 +4>t: —

We receive,

/ x / 10£(1 — ) 2
VaZ 3z —4 (1 — t2)25¢ 1—¢2

1+t Ve +4++vx—1
=1 C=lIn C.
[ o [T
14. Integrals of the type f v)dz
V ax2+ba:+c
Integrals of the type
/ \/&51;2 + bx +c

where P, (x) — is the multinomial of the power n, using the formula the following

formula we can compute

= Qu_1(z \/a:v2+b:c+c+)\/\/ > (2)
ax

/\/ax2+bx+c +br+c

where @,—1(z) — is the multinomial with the indefinite indexes of the power n—1,

and A\ — is also the indefinite index.
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All the indefinite indexes are got from identity, which is received by differentiating

of the both parts of the equality (2)
A

Var + bz + ¢

Pa) |
Varz +br+c¢ <Qn—1(x)\/@$2 + bx + c) +

after what we must equate the indexes under the equal powers of the unknown x.

The example. It is required to to calculate the integral

2
I:/ L dx
V1 —2x — 2?2

The answer. Using the formula (2), we get

dx
dx = (Ax + B \/1—2:1;—:1:2+)\/
( ) V1 —2x — 22

1:/ 2
V1 —2x — 22

Differentiating this equality, we get
2

* — AV — 22 — 22+
V1—=2r — 22
—2 —2x A
+(Ax + B +
( )2\/1—231:—:52 V1—2x— 22

= A(l — 2z — 2*) + (Az + B)(—1 — x) + A,

Comparing the indexes under the equal powers x
—24 = 1, A= -1
—3A—-B = 0, B =
A—B+ X = 0. A=
Consequently,

Y

N nolw

)\/1—2x—x2+2/ =
\/2— z+1)2
3 r+1
—z+— | V1 —2x— 22+ 2arcsin + C.
2) V2

~
I
/\

I
VR
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15. Integration of some trigonometrical functions

The universal trigonometrical substitution. Let’s examine the integral

of the type
/R(sinx, cos z)dx, (1)

where R — is its arguments’ rational function. We’ll show that this integral cones to

the integral from the rational function with the help of the method of substitution

— (2)

t_
93

We'll express sinx and cos z through tg 5, and consequently through ¢.

. 2singcosy  2sinjcosy  2tgz 2t
sinx = = —5= T = = 5
1 sin“ g +cos?y  1+4+1tg*5 1+t
cos’L —sin?Z  cos®L —sin?L 1 —tg?L 1 —¢2
_ 2 2 _ 2 2 _ 2 _
cosT = =~ 5w 2z 2°
1 sin“§ +cos?3  1+1tg°5 141

Considering (2), we’ll find

2dt
14+t

xr = 2arctgt, dv =

Thus sin z, cosx and dx were rationally expressed through ¢, that’s why substituting

the received expressions in (1), we’ll have the integral from the rational function

, 2t 1—1t*\ 2dt
/R(sm:c, cosx)d:v:/R<1+t2,1+t2> e

The example.

dx ffttz dt x
/?mx t/ s /~t n|t|+C iﬂ92W+C

1-+¢2

With the help of the universal trigonometrical substitution the integral (1)
always comes to the integral from the rational function. However practically it
often leads to too cumbrous calculations That’s why it’s useful to remember
another substitutions, which make these calculations much easier.

1) The integral of the type
/ R(sinx) cos x dx
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with the method of substitution sin z = ¢, cos x dr = dt comes to the integral

/ R(t)dt.

/ R(cosz)sinx dx

2) The integral of the type

comes to the integral from the rational function with the method of substitution
cosr =t, ,sinxdr = —dt.
3) If the integrand function depends only on tgz, then the replacement tgx =

t, doe = %, depresses the integral to the integral from the rational function.

The example. It’s required to find the integral
.3
S
/ _sm'r
2+ cosx
The answer. This integral depresses to the form [ R(cosz)sinz dz
sin® x sin? z sin x 1 —cos’z .
—dr= | ————dr = | ———sinxdx
24 cosx 24 cosx 24 cosx
We'll substitute cosz = t, then sinx dxr = —dt

i3 t2_1
/&dx:/ dt:/(t—2+i)dt:
24+ cosx t+2 t+ 2

t2 2
:5—2t+31n\t+2\+C:COS v

—2cosx + 3In(cosx + 2) 4+ C.

4) The integrals of type

sin™ x cos” x dx,

where m u n — the integers. Here three variants are possible
a) one of the numbers m u n — is uneven. Let, for example, n — is uneven, then

n=2p+1.
/sinm x cos? M xdr = /Sinm z (1 — sin® z)? cos = dx.
Let’s make the substitution sinxz = ¢, cosx dx = dt. We get
/sinmx cos" xdr = /tm(l — tH)Pdt.
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The example.

/ sin® z cos® zdr = / sin? x cos®z cosx dr =

gt
= /sian(l — sin*z) cosx dr = ( S ) =

cosxdx = dt

t3 t5
:/tQ(l—tQ)dt:/(t2—t4)dt:§_3+C:
sinxz  sin’x
= — C.
3 5% *

6) m and n — are the even nonnegative numbers. We’ll use the formulas of the

power’s decrease.

. 9 1 — cos2x 5 1 + cos2x
sin”# = ————, cos" L = ———.

1 1
/sin4xdx =5 (1 — cos2x)*dzx = 1 /(1 — 208 27 + cos’ 27)dx =

1 L 1[3 -
=7 [x—sin2x+§/(1+cos4x)d:@] =7 [§$—81n2x+ Sln8 x} ‘C

B) m u n — are even, although even one of them is negative. We must make the
substitution tgz =t (or ctgx = t).
The example.

.9 99 2,2
sin® sin® z(sin” x + cos® x
/ dx :/ ( + ) dr = /tg2:1:(1 +tg* x)dr =

cosb x cosb x
tgr =1 x =arctgt 5 9o dt /2 9
= = [ 21+ 82— = [ 1 +1})dt =
( dr = 125 ) / (1+ )1+t2 (1+7)
B ti*r  tg'x
=—+—-—+4+C= C.
3+5+ 3 * 5 *

5) The integrals of the type
/ cosmx cosnx dx, / sinmx cosnx dzx, / sinmx sinnx dx.

are calculated with formulas

1
COS MT COSNT = §[Cos(m + n)x + cos(m — n)x],
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: L. :
sinmx cosnr = é[sm(m + n)x + sin(m — n)z|,

: : 1
sinmx sinnz = 5[— cos(m + n)x + cos(m — n)z].
The example.

sin8r  sin2x

1
/sin5a:sin3xda::5/(—(}088x+0032x)dx:— G + ;

31
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Vuebno-memoduueckoe nocobue
Henucosa Mapuna FpbesHa,

KopnausioBa Jlus Axarosna

HEOITPEAEJIEHHBINM MHTEIPAJI (THE INDEFINITE INTEGRAL)
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