На правах рукописи

Шахов Александр Алексеевич

ИССЛЕДОВАНИЕ ФТОРИДОВ СО СТРУКТУРОЙ ПЕРОВСКИТА, АКТИВИРОВАННЫХ ИОНАМИ ТАЛЛИЯ И СВИНЦА, МЕТОДАМИ ОПТИЧЕСКОЙ И ЭПР СПЕКТРОСКОПИИ

01.04.07 - физика конденсированного состояния

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени

кандидата физико-математических наук

Казань — 2007

Работа выполнена на кафедре квантовой электроники и радиоспектроскопии Казанского государственного университета им. В.И. Ульянова-Ленина.

Научный руководитель:	кандидат физико-математических наук,	
	доцент	
	Силкин Николай Иванович.	
Научный консультант:	доктор физико-математических наук,	
	профессор	
	Аминов Линар Кашифович.	
Официальные оппоненты:	доктор физико-математических наук,	
	профессор	
	I оленищев-Кутузов Вадим Алексеевич	
	доктор физико-математических наук,	
	профессор	
	Низамутдинов Назым Минсафович.	
Ведущая организация:	Казанский физико-технический институт	
	им. е.к. завоиского казнц РАН.	

Защита состоится 31 мая 2007 г. в 14³⁰ часов на заседании диссертационного совета Д 212.081.15 при Казанском государственном университете им. В.И. Ульянова-Ленина: 420008, Казань ул. Кремлевская, 18.

С диссертацией можно ознакомиться в Научной библиотеке им. Н.И. Лобачевского.

Автореферат разослан "____" ____ 2007 года

Ученый секретарь

Диссертационного совета

Еремин М.В.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы

Активированные кристаллы находят все большее применение в науке и технике. Благодаря высокой симметрии кристаллы типа перовскита ABX₃ (A=Me⁺, B=Me²⁺, X=F⁻, Cl⁻, Br⁻, Г) являются хорошими модельными объектами для исследования магнитных и оптических свойств, динамики кристаллической решетки, различных механизмов электронно-колебательных, обменных, сверхтонких взаимодействий.

Большое количество разнообразных галоидных перовскитов открывает возможности активации их различными примесями: ионами редкоземельных и переходных металлов, ртутеподобными ионами. Соответственно широк и круг явлений, которые можно исследовать в таких объектах.

Фторидные кристаллы со структурой перовскита обладают широкой областью оптической прозрачности, высокой радиационной стойкостью, они негигроскопичны; технология выращивания кристаллов позволяет получать образцы высокого оптического качества. Эти свойства обуславливают их широкое практическое применение.

Кристаллы фторидов со структурой перовскита используются в качестве активных сред твердотельных перестраиваемых лазеров видимого и ИКдиапазона, например, KZnF₃, активированный ионами Cr³⁺ [1]; в сцинтилляторах, например, LiBaF₃, активированный ионами Ce³⁺ [2].

Экспериментальные И теоретические исследования фторидов co структурой перовскита, активированных ртутеподобными ионами (такими, как Pb^{2+}), Tl^+ . представляют значительный интерес для создания новых эффективных сцинтилляторов, оценки перспективности создания перестраиваемых твердотельных лазеров в УФ диапазоне спектра. Эти исследования соответствуют задачам Федеральной целевой программы "Исследования и разработки по приоритетным направлениям развития научнотехнологического комплекса России на 2007 - 2012 годы" - "Индустрия наносистем и материалы".

Работа выполнялась при поддержке Российского фонда фундаментальных исследований (гранты № 03-02-17396, № 98-02-18037) и грантов научно-образовательного центра КГУ REC-007.

<u>Цель работы</u>

- экспериментальное исследование кристаллов KMgF₃:Tl⁺, KZnF₃:Tl⁺ и LiBaF₃:Pb²⁺ методами оптической и ЭПР спектроскопии;
- построение моделей примесных центров ионов таллия и свинца в кристаллах KMgF₃:Tl⁺, KZnF₃:Tl⁺ и LiBaF₃:Pb²⁺;
- определение структуры энергетических уровней примесных центров и параметров электронно-колебательного взаимодействия в основном и возбужденном состояниях.

Научная новизна

1. Исследованы оптические спектры поглощения и люминесценции кристаллов KMgF₃:Tl⁺, KZnF₃:Tl⁺ и LiBaF₃:Pb²⁺.

2. Исследованы спектры ЭПР кристаллов KZnF₃:Tl и LiBaF₃:Pb.

3. Построены модели примесных центров ионов таллия и свинца в кристаллах KMgF₃:Tl⁺, KZnF₃:Tl⁺ и LiBaF₃:Pb²⁺.

4. Определены параметры электронно-колебательного взаимодействия в основном и возбужденном состояниях этих центров.

Научная и практическая ценность работы

1. Определены спектрально-кинетические характеристики фторидных кристаллов со структурой перовскита KMgF₃:Tl⁺, KZnF₃:Tl⁺ и LiBaF₃:Pb²⁺ в диапазоне энергий 1.4 – 6.6 эВ при температурах 10 – 300 К;

2. Предложена структурная модель примесных центров в кристаллах $KMgF_3:Tl^+$, $KZnF_3:Tl^+$ и $LiBaF_3:Pb^{2+}$ и построены схемы энергетических

уровней, позволившие удовлетворительно описать положение полос поглощения и люминесценции, их структуру и температурную трансформацию, а также ряд кинетических характеристик.

3. Установлено, что в наблюдаемых спектрах люминесценции кристаллов $\text{KMgF}_3:\text{Tl}^+$, $\text{KZnF}_3:\text{Tl}^+$ и $\text{LiBaF}_3:\text{Pb}^{2+}$ наблюдается запрещенный переход ${}^3\Gamma_{1u} \rightarrow {}^1\Gamma_{1g}$. При низких температурах в первых двух кристаллах этот переход наблюдается в виде бесфононной линии.

4. Определено, что при выращивании кристаллов LiBaF₃:Pb²⁺ методом Бриджмена-Стокбаргера свинец в качестве примеси входит в кристалл в количестве не превышающем 30% от концентрации ионов в исходной шихте.

5. На основании исследованных спектрально-кинетических характеристик кристалла LiBaF₃:Pb²⁺ можно предположить, что ионы Tl⁺ и Pb²⁺ могут быть использованы для сенсибилизации люминофоров, активированных редкоземельными ионами.

Результаты работы могут быть использованы при создании и изучении материалов для квантовой электроники и ядерной физики.

На защиту выносятся

- результаты экспериментальных исследований кристаллов со структурой перовскита KMgF₃:Tl⁺, KZnF₃:Tl⁺ и LiBaF₃:Pb²⁺ методами оптической и ЭПР спектроскопии при температурах 10 300 К.
- модели центров и схемы уровней энергии кристаллов KMgF₃:Tl⁺, KZnF₃:Tl⁺
 и LiBaF₃:Pb²⁺.

Апробация работы

Основные результаты работы представлялись на Всероссийских и университетских конференциях: VI молодежная научная школа "Когерентная оптика и оптическая спектроскопия" (Казань, 2002), VIII молодежная научная школа "Когерентная оптика и оптическая спектроскопия" (Казань, 2004), XII Феофиловский симпозиум по спектроскопии кристаллов, активированных

ионами редкоземельных и переходных металлов (Екатеринбург, 2004); ученых, конференциях молодых аспирантов И студентов научнообразовательного центра Казанского государственного университета "Материалы и технологии XXI века" (Казань, 2003, 2004, 2005), итоговых научных конференциях Казанского государственного университета (Казань, 2002, 2006), юбилейной конференции Казанского государственного университета (Казань, 2004).

<u>Публикации</u>

Основное содержание работы отражено в 3 статьях в международных научных журналах, 2 трудах и 5 тезисах докладов вышеперечисленных конференций.

Структура диссертации

Диссертация состоит из введения, четырех глав, заключения и библиографии. Работа изложена на 106 страницах машинописного текста, включая 39 рисунков, 4 таблицы и 2 приложения.

<u>Личный вклад автора</u> в совместных публикациях заключается в следующем:

- Участие в постановке задач и определении экспериментальных методов их решения.
- Проведение экспериментальных исследований методами оптической спектроскопии.
- Участие в проведении исследований методами ЭПР спектроскопии.
- Анализ и обсуждение результатов, компьютерное моделирование, участие в написании статей.

КРАТКОЕ СОДЕРЖАНИЕ РАБОТЫ

Во **введении** кратко обоснованы актуальность проблемы, научная и практическая значимость работы, сформулированы цели и задачи исследования.

Первая глава представляет собой обзор публикаций, посвященных исследованию кристаллов, активированных s^2 -ионами, методами оптической спектроскопии; существующих моделей и теоретических подходов для описания спектральных и динамических характеристик примесных центров. При достаточно низких концентрациях активатора, около 10^{-2} ат. %, в спектре поглощения кристалла наблюдаются четыре характерные полосы, которые обозначаются A, B, C и D в порядке увеличения энергии (рис. 1) [3].

Рис. 1. Схема энергетических уровней основной $6s^2$ и возбужденной 6sp электронных конфигураций иона Tl^+ в кубическом кристаллическом поле. Вертикальными линиями обозначены переходы, соответствующие наблюдаемым полосам поглощения (${}^{3}\Gamma_{4u}^{*}$ и ${}^{1}\Gamma_{4u}^{*}$ обозначены положения уровней при учете спин-орбитального взаимодействия во втором порядке теории возмущений – так называемый эффект "отталкивания" уровней).

D полосу обычно связывают с возмущением зонных состояний кристалла из-за наличия примеси (сдвиг границы фундаментального поглощения). Для фторидных кристаллов со структурой флюорита и перовскита B, C и D полосы поглощения находятся в вакуумной ультрафиолетовой области спектра [4, 5]. В

настоящей работе были исследованы процессы поглощения и люминесценции в диапазоне энергий 6.7 – 1.4 эВ (А полоса).

Вторая глава посвящена описанию методики подготовки образцов для исследований и экспериментальных установок, использовавшихся в настоящей работе. Описаны условия, необходимые для получения образцов высокого оптического качества. Концентрация примесных ионов определялась методом рентгенофлуоресцентного анализа, качество кристаллов контролировалось методом рентгеноструктурного анализа.

Измерения спектров поглощения в диапазоне 6.7 – 1.4 эВ (54000 – 11000 см⁻¹) проводились на двухлучевом спектрофотометре Specord-M40. Спектры возбуждения люминесценции И измерялись на автоматизированной экспериментальной установке, собранной на базе монохроматоров МДР-6 и МДР-23 в каналах возбуждения и регистрации, соответственно. Возбуждение осуществлялось ксеноновой лампой высокого давления ДКсЭл-1000. регистрация – охлаждаемым фотоумножителем ФЭУ-106, работающим в режиме счета фотонов. Измерения кинетики люминесценции проводились при помощи многоканального счетчика одноэлектронных импульсов; максимальная частота выборок была равна 1 МГц, "мертвое время" системы составляло 400 нс. Возбуждение осуществлялось ксеноновой лампой ДКсШ-150, работающей в импульсном режиме (длительность импульса ~30 нс). Для исследования температурных зависимостей оптических спектров в диапазоне температур 4.2 - 300 К использовался оптический криостат CF-1204 фирмы Oxford Instruments.

Спектральное разделение полос люминесценции с различными временами затухания осуществлялось по фазочувствительной методике.

Измерения спектров ЭПР проводились на ЭПР-спектрометре Хдиапазона Bruker- ESP300. Для температурных исследований использовалось криогенное оборудование фирмы Oxford Instruments ESR-900. Ориентация монокристаллических образцов для исследований методом ЭПР производилась на рентгеновском дифрактометре ДРОН-2, точность ориентации составляла ±2°. В **третьей главе** представлены результаты экспериментальных исследований методами оптической и ЭПР – спектроскопии кристаллов $KMgF_3:Tl^+$, $KZnF_3:Tl^+$. Одинаковая валентность ионов Tl^+ и K^+ и близость их ионных радиусов [6] позволяют предположить, что примесные ионы Tl^+ в кристаллах $KMgF_3$ и $KZnF_3$ замещают ионы K^+ . Это предположение было подтверждено анализом суперсверхтонкой структуры спектров ЭПР ионов Tl^{2+} в облученных кристаллах $KZnF_3:Tl$. Таким образом, было однозначно установлено, что ионы таллия в процессе выращивания кристаллов занимают позицию ионов калия с правильным кубооктаэдрическим окружением из ионов фтора.

Для кристаллов KZnF₃:Tl⁺ в спектре поглощения наблюдалась характерная для иона Tl⁺ A полоса поглощения. В спектре люминесценции при возбуждении в A полосу поглощения наблюдалась широкая интенсивная полоса, которая имеет плечо (полоса A₁) со стороны больших длин волн (рис. 2).

Рис. 2. Спектры поглощения (а, T = 300 K) и люминесценции (б, T=100 K; в, T=300 K) кристалла KZnF₃:Tl⁺

Рис. 3. Спектр люминесценции кристалла $KZnF_3:Tl^+$ при T = 10 K (а); спектр быстрой, A', компоненты люминесценции (б), интенсивность увеличена в 150 раз. На вставке представлена структура спектра в области бесфононной линии

Показано, обусловлена что интенсивная полоса люминесценции перекрыванием излучательным переходам: полос, отвечающих двум приближении разрешенному электрическом дипольном переходу В

 $|^{3}\Gamma_{4u}^{*} \rightarrow |^{1}\Gamma_{1g} > (A')$ и слабо разрешенному переходу с метастабильного $|^{3}\Gamma_{1u} \rightarrow |^{1}\Gamma_{1g} > (A'')$. Это приводит к сильной температурной состояния зависимости спектра люминесценции. В области температур Т < 70 К наблюдается бесфононная линия (рис. 3), обусловленная переходами с метастабильного состояния. Полоса люминесценции (А' + А") обусловлена одиночными ионами Tl⁺ – регулярным типом примесных центров. Соотношения интенсивностей А1 полосы люминесценции и (А' + А") полосы существенно меняется в различных образцах, однако, какой-либо регулярной зависимости соотношения интенсивностей от концентрации ионов Tl⁺ не наблюдалось, следовательно, A₁ полосу люминесценции нельзя отнести к димерным центрам $(Tl^{+})_{2}$ [7]. Предложено, что А₁ полоса обусловлена нерегулярными "дефектными" центрами ионов Tl⁺.

Кинетика люминесценции представляет собой суперпозицию компонент, "быстрой" и "медленной", называемых так согласно общепринятой терминологии [8, 9]. Обе компоненты соответствуют А' и А" переходам. температуры. Времена жизни этих компонент сильно зависят ОТ Соответствующие аналитические выражения, описывающие температурную зависимость кинетики люминесценции, могут быть получены в рамках трехуровневой модели с участием состояний ${}^{1}\Gamma_{1g}$, ${}^{3}\Gamma_{1u}$ и ${}^{3}\Gamma_{4u}^{*}$ (см. рис. 4), где k_{I} и k_2 – вероятности излучательных переходов из состояний 1 и 2, соответственно, k_{21} - вероятность безызлучательного перехода $2 \rightarrow 1$.

Рис. 4. Трехуровневая модель А-люминесценции [8]

Если выполняется условие $k_{21} >> k_2$ (это условие всегда выполняется в области высоких температур), то температурная зависимость времени жизни медленной компоненты хорошо описывается следующим приближенным соотношением [8]:

$$\tau_{\rm s}^{-1} = \frac{\mathbf{k}_1 + \mathbf{g}\mathbf{k}_2 \exp(-\Delta \mathbf{E} / \mathbf{k}\mathbf{T})}{1 + \mathbf{g}\exp(-\Delta \mathbf{E} / \mathbf{k}\mathbf{T})},\tag{1}$$

где g - отношение кратностей вырождения уровней 2 и 1 (в рассматриваемом случае g=2). Излучательный переход из метастабильного состояния 1 (рис. 4) запрещен в электрическом дипольном приближении. Данный переход частично разрешается некоторыми слабыми взаимодействиями (сверхтонкое взаимодействие и механизмы с участием фононов; см. ниже). Уравнение (1) хорошо описывает экспериментальные результаты, если учесть наличие для вероятности k_1 температурной зависимости, которая может быть объяснена частичным разрешением перехода из состояния 1 за счет взаимодействия с либрационными колебаниями кластера [TIF₁₂] симметрии Γ_{4g} , в виде [10]:

$$k_{1} = k_{10} + k_{1d} \coth(\eta \Omega / 2kT),$$
(2)

где Ω – частота колебания, k_{1d} – динамический вклад в вероятность перехода при Т \rightarrow 0 К. Значения параметров, полученные при аппроксимации экспериментальных данных выражением (1) с учетом (2), приведены в табл. 1.

Параметры k_{10} и k_{1d} определяются с большой погрешностью, поэтому в таблице приведена только сумма ($k_{10} + k_{1d}$). Значение $K = k_{21}(T = 0)$ в табл. 1 получено из низкотемпературного предела отношения интегральных интенсивностей А' и А" полос:

$$I_{A'} / I_{A''} = k_2 / k_{21} = k_2 / K.$$
(3)

Вероятность k_{10} для A_1 полосы люминесценции значительно больше, чем для (A' + A") полосы и динамическим вкладом можно пренебречь ($k_{1d} = 0$); полученные значения параметров для A_1 полосы также приведены в табл. 1.

Таблица 1.

Параметр	(A' + A")	A_1
$k_{10} + k_{1d}, \mathrm{c}^{-1}$	86 ± 1	1170 ± 20
k_2, c^{-1}	$(6.1 \pm 0.1) \ge 10^7$	$(4.5 \pm 0.1) \ge 10^6$
ΔE , мэ ${ m B}$	147.2 ± 0.5	37.5 ± 0.5
η <i>Ω</i> , мэВ	7.4 ± 2.2	
K, c^{-1}	$(3.1 \pm 0.1) \ge 10^9$	

Параметры трехуровневой модели, полученные из температурных зависимостей времен жизни медленных компонент (A' + A") и A_1 полос люминесценции кристалла $KZnF_3:Tl^+$

Для описания спектрально-кинетических характеристик кристаллов KZnF₃:Tl⁺ была использована кластерная модель, в рамках которой в качестве центра люминесценции рассматривается комплекс [TlF₁₂], находящийся в электростатическом поле остальной части кристалла.

Микроскопическая модель центров ионов Tl⁺

Модельный гамильтониан имеет вид:

$$H = H_0 + H_{ee} + H_{so} + H_{e-l}, (4)$$

где H_0 соответствует одноэлектронному приближению для кубической квазимолекулы (комплекса), включающей примесный ион и его ближайшее окружение, H_{ee} описывает кулоновское отталкивание электронов, H_{so} - спинорбитальное взаимодействие. Кинетическая энергия ядер в (4) опущена (адиабатическое приближение). Слагаемое H_{e-1} включает электронноколебательное взаимодействие и упругую энергию:

$$H_{e-l} = \sum V_i Q_i + \sum a_i Q_i^2.$$
⁽⁵⁾

Здесь Q_i представляют собой линейные комбинации смещений ядер из равновесия, преобразующиеся положений согласно неприводимым представлениям Γ_{1g} , Γ_{3g} , Γ_{5g} кубической группы O_h . Ограничение этими представлениями, обусловлено тем, что лишь электронные операторы (V_i) с соответствующими свойствами симметрии имеют отличные от нуля матричные элементы на s- и p-состояниях электронов. Для квазимолекулы вида [TlF₁₂] $Q_1(\Gamma_{1g}); Q_2, Q_3(\Gamma_{3g}); Q_4, Q_5, Q_6(\Gamma_{5g})$ - так называемые «моды взаимодействия» [11], обладающие соответствующими свойствами симметрии. Q_1 называют полносимметричной модой, Q_2 , Q_3 - тетрагональные моды (так, $Q_3 \neq 0$ соответствует тетрагональному искажению квазимолекулы вдоль одной из осей четвертого порядка), Q_4 , Q_5 , Q_6 - тригональные моды ($Q_4 = Q_5 = Q_6$ описывает искажение вдоль тригональной оси).

Анализ спектров поглощения в системах KMgF₃:Tl⁺ и KZnF₃:Tl⁺ показал, что в них преобладает взаимодействие с тригональными модами Q_4 , Q_5 , Q_6 [12]. Поэтому были исследованы минимумы функций $E_n(Q_4, Q_5, Q_6)$ на трехмерных подпространствах тригональных смещений. На рис. 5 изображено сечение эти адиабатических потенциалов плоскостью, приближенно соответствующей тригональному искажению центра ($Q_1 = Q_2 = Q_3 = 0$, $Q_4 = Q_5 = Q_6$). Адиабатические потенциалы для кристалла KZnF₃:Tl⁺ были рассчитаны с параметрами, полученными из анализа спектров поглощения [12]. Потенциалы четырех нижних состояний, связанных с невозмущенными термами ${}^{3}\Gamma_{1u}$ и ${}^{3}\Gamma_{4u}^{*}$, а также основного состояния ${}^{1}\Gamma_{1g}$ участвуют в формировании А полосы поглощения и соответствующих А' и А" полос люминесценции.

Триплет ${}^{3}\Gamma_{4u}^{*}$ расщепляется в результате тригонального искажения на синглет и дублет, и минимальная энергия дублета при Q = -0.67 примерно соответствует абсолютному минимуму функции $E_A(Q_1,...,Q_6) \approx 5.88$ эВ. Нижняя часть верхней параболы (синглет) является не абсолютным минимумом, а седловой точкой. При возбуждении в А полосу поглощения заселяются состояния триплета ${}^{3}\Gamma_{4u}^{*}$ с энергиями вблизи E_A . В результате деформации возбужденного комплекса оптические центры переходят в точки вблизи

дублетного минимума адиабатических потенциалов ${}^{3}\Gamma_{4u}^{*}$ (переход в релаксированные возбужденные состояния, RES, происходит за времена порядка 10^{-12} сек; на рис. 5 он помечен пунктирной стрелкой).

Рис. 5. Сечение адиабатических потенциалов регулярного центра Tl⁺ в кристалле KZnF₃ и схематическое представление процессов, обуславливающих А полосу люминесценции

Релаксированные возбужденные состояния могут распадаться вследствие излучательных переходов в основное состояние, а также в результате безызлучательных переходов в другие минимумы адиабатических потенциалов (такие переходы изображены на рис. 5 штриховыми стрелками).

Таким образом, обосновывается возможность анализа кинетики люминесценции на основе трехуровневой модели (рис. 4), где второй возбужденный уровень - тригональный дублет, возникающий при расщеплении ${}^{3}\Gamma_{4u}^{*}$. Расчетный триплета интервал кубического исходного межли $\Delta E = E_A(Q_{\min}) - E_1 \approx 0.16 \, \mathrm{B}$ возбужденными уровнями находится В удовлетворительном согласии с результатами эксперимента (0.146 эВ). *sp* - конфигурации ${}^{3}\Gamma_{1u}$ обладает слабо Метастабильное состояние выраженным минимумом энергии $E_1(Q=0) = 5.72$ эB; при температурах ~ 100 К (0.01 эВ) флуктуации деформации комплекса, ответственные за уширение линии запрещенного перехода ${}^{3}\Gamma_{1u} \rightarrow {}^{1}\Gamma_{1g}$, достигают значения $\sqrt{\langle Q^{2} \rangle} \approx 0.4$, и бесфононная линия в спектре люминесценции не наблюдается.

Оптическая спектроскопия кристаллов KMgF₃:Tl⁺

В отличие от системы KZnF₃:Tl⁺, для кристалла KMgF₃:Tl⁺ A₁ полоса люминесценции не наблюдалась. При T=4.2 К спектр люминесценции кристалла KMgF₃:Tl⁺ (рис. 6) состоит из широкой электронно-колебательной полосы с E_{max} =5.91 эВ, на коротковолновом краю которой наблюдается бесфононная линия малой интенсивности E_{max} =6.0307 эВ, а также интенсивной бесфононной линии с E_{max} =5.8123 эВ. Кинетика люминесценции во всем интервале температур одноэкспоненциальная. Время жизни люминесценции с E_{max} =5.8123 эВ при T=10 K равно ~14 мс, а типичное значение времени жизни быстрой компоненты люминесценции при температуре T ~ 10 K меньше 10 нс [8].

Рис. 6. Температурная зависимость спектра люминесценции кристалла KMgF₃:Tl⁺

Рис. 7. Температурная зависимость времени жизни медленной компоненты люминесценции кристалла KMgF3:Tl⁺

Столь большая разница времен жизни позволила разделить полосы люминесценции, соответствующие переходам из состояний ${}^{3}\Gamma_{1u}$ и ${}^{3}\Gamma_{4u}^{*}$.

Бесфононная линия соответствует медленной компоненте люминесценции, а широкая полоса – быстрой. Отношение интегральных интенсивностей быстрой и медленной компонент для кристалла $\text{KMgF}_3:\text{Tl}^+$ при T=10 К составляет $I_{A'}/I_{A''} = 2.57$, что существенно отличается от аналогичной величины для изоструктурного KMgF_3 кристалла KZnF_3 .

Для анализа температурной зависимости времени жизни медленной компоненты люминесценции ионов Tl⁺ (рис. 7) использовалась трехуровневая схема, как и в случае KZnF₃, с дополнительным учетом ротационно-колебательного вклада в разрешение перехода из метастабильного состояния.

Таблица 2.

Параметр	Значение
$k_{10} + k_{1d}, \mathrm{c}^{-1}$	67 ± 1
K, c^{-1}	$(4.3 \pm 0.1) \ge 10^7$
<i>∆Е</i> , мэВ	201 ± 2
η <i>ω</i> , мэВ	26.0 ± 0.1
η <i>Ω</i> , мэВ	13.8 ± 6.4
$k_2 = K \cdot I_f / I_s, c^{-1}$	10^{8}

Параметры трехуровневой модели, полученные из температурных зависимостей времен жизни медленных компонент (A' + A") и A₁ полос люминесценции кристалла $KMgF_3$:Tl⁺

Полученные экспериментальные результаты объяснены в рамках кластерной модели. Для подтверждения справедливости исходного предположения о кубическом окружении примесного иона Tl⁺ в кристаллах KZnF₃ и KMgF₃ были проведены исследования ЭПР кристаллов KZnF₃:Tl⁺.

ЭПР кристаллов KZnF₃:Tl²⁺

Ион Tl⁺ имеет электронную конфигурацию $6s^2$. В химических соединениях таллий встречается в двух валентных состояниях – Tl⁺ (электронная конфигурация $5d^{10}6s^2$) и Tl³⁺ ($5d^{10}$). Природный таллий состоит из двух изотопов ²⁰³Tl и ²⁰⁵Tl с естественным содержанием 29.5% и 70.5%,

соответственно. Оба изотопа имеют одинаковый ядерный спин I = 1/2 и близкие значения магнитных моментов ($\mu_{205TI}/\mu_{203TI}=1,0097$).

Парамагнитное двухвалентное состояние с электронной конфигурацией $5d^{10}6s^1$ (основное состояние ${}^2S_{1/2}$) получают при облучении кристаллов, активированных непарамагнитными ионами Tl^+ . Для ионов с неспаренным *s*-электроном (Tl^{2+}) характерно сильное контактное сверхтонкое взаимодействие между электронным и ядерным магнитными моментами (константа сверхтонкой структуры для свободного иона Tl^{2+} , обусловленная контактным взаимодействием, равна A = 183.8 ГГц). Уровни энергии основного состояния представляют собой синглет *F*=0, *m_F*=0 и триплет *F*=1, *m_F*=1,0,-1. Положение уровней энергии основного состояния описывается формулой Брейта-Раби [13].

Спектр ЭПР облученных при 77 К кристаллов KZnF_3 : Tl^+ наблюдался в диапазоне температур 30 – 120 К. Для необлученных образцов сигнал ЭПР центров Tl^{2+} не наблюдался.

Рис. 8. Спектр ЭПР иона Tl^{2+} в кристалле KZnF₃:Tl при T = 60 K, H||C₄

В спектре ЭПР (рис. 8) при В = 6396 Гс и В = 7312 Гс имелись две линии, обязанные сверхтонким переходам изотопов двухвалентного таллия.

Вследствие близости магнитных моментов изотопического разрешения в спектрах ЭПР наблюдалось. Положение центров линий не зависело от ориентации кристаллов в магнитном поле. Это говорит о том, что компенсация избыточного заряда иона Tl^{2+} носит нелокальный характер; g-фактор и тензор сверхтонкой структуры изотропны и, в нашем случае, формула Брейта-Раби применима для расчетов. Рассчитанный параметр сверхтонкой структуры *A* для иона Tl^{2+} в кристалле KZnF₃ равен 142.2 ± 0.5 ГГц, значение *g*-фактора *g* = 1.981 ± 0.001.

Зависимость положения уровней энергии от величины магнитного поля для иона Tl^{2+} в кристалле KZnF₃ показана на рис. 9. Стрелками показаны ЭПР переходы в X-диапазоне: слабополевой F = 1, $m_F = -1 \iff F = 1$, $m_F = 0$ и сильнополевой переход F = 1, $m_F = 0 \iff F = 1$, $m_F = 1$.

Рис. 9. Зависимость положения уровней энергии иона Tl²⁺ в кристалле KZnF₃ от величины магнитного поля

Расчет параметров спинового гамильтониана в кластерной модели, представляющей собой парамагнитный центр, окруженный ближайшими к нему лигандами (фторами), и моделирование суперсверхтонкой структуры спектров ЭПР подтверждают предположение о кубическом 12-кратном окружении ионов Tl²⁺ в кристаллах KZnF₃:Tl.

В <u>четвертой главе</u> рассмотрены особенности оптических спектров ионов Pb^{2+} в кристалле LiBaF₃, имеющем структуру "антиперовскита". В диапазоне энергий 6.6 – 1.4 эВ кристалл LiBaF₃:Pb²⁺ имеет одну интенсивную полосу поглощения с $E_{max} = 6.34$ эВ (А полоса) при T = 300 К (рис.10).

Рис. 10. Спектры поглощения (а) и люминесценции (б, в) кристаллов LiBaF₃:Pb²⁺ с концентрациями ионов Pb²⁺ 0.35 ат.% (б) и 0.03 ат.% (в), $E_{B036} = 6.2$ эВ, T = 300 K

Рис. 11. Полосы люминесценции A' (1, E_{B036} = 6.4 эВ) и A₁ (2, E_{B036} = 6.2 эВ) кристалла LiBaF₃:Pb²⁺ с концентрацией ионов Pb²⁺ 0.35 ат.% и соответствующие им полосы возбуждения люминесценции (1', E_{per} = 5.0 эВ и 2', E_{per} = 4.0 эВ), T = 10 K

В отличие от ионов Tl⁺ в кристаллах KZnF₃ и KMgF₃, дублетная структура этой полосы не была обнаружена, что находится в полном соответствии с данными работы [5]. Измерения, выполненные на двух образцах с концентрациями ионов Pb²⁺ 0.35 ат.% (б) и 0.03 ат.%, показали, что интенсивность A₁ полосы люминесценции примерно одинакова для обоих кристаллов, а интенсивность A' полосы пропорциональна концентрации ионов Pb²⁺ в кристалле. Это позволяет нам отнести A' полосу спектра люминесценции к ионам Pb²⁺.

При понижении температуры значительных изменений спектра люминесценции не наблюдается. При T = 10 K обе A₁ и A' полосы остаются

бесструктурными, при этом максимумы полос сдвигаются в сторону более низких энергий (4.98 эВ и 3.96 эВ, соответственно), а ширина полос уменьшается (0.40 эВ и 0.37 эВ, соответственно, см. рис. 11). Интегральная интенсивность полос люминесценции от температуры не зависит. На рис. 11 также представлены спектры возбуждения A_1 и A' полос люминесценции при T=10K.

Для анализа температурной зависимости времени жизни τ_s медленной компоненты А' люминесценции было использовано выражение (1) со следующими значениями параметров модели:

$$k_1 = 1140 \pm 90 \text{ c}^{-1}, k_2 = (3.4 \pm 0.3) \cdot 10^7 \text{ c}^{-1}, \Delta E = 81 \pm 1 \text{ M}3B.$$
 (6)

Рис. 12. Сечение адиабатических потенциалов регулярного центра Pb²⁺ в кристалле LiBaF₃ и схематическое представление процессов, обуславливающих А полосу люминесценции

На основании моделирования формы А полосы поглощения и с учетом данных [5] построены адиабатические потенциалы для основного ${}^{1}\Gamma_{1g}$ и двух нижних возбужденных состояний ${}^{3}\Gamma_{1u}$ и ${}^{3}\Gamma_{4u}^{*}$ в зависимости от величины тригонального искажения $Q = Q_4 = Q_5 = Q_6$ (рис. 12). Спектр А полосы

поглощения, полученный симуляцией методом Монте-Карло, для T = 300 К хорошо воспроизводит экспериментальный (рис. 13).

Рис. 13. Спектр поглощения кристалла LiBaF₃:Pb²⁺ с концентрацией ионов Pb²⁺ 0.03 ат.% (сплошная линия) и результат его моделирования методом Монте-Карло (штриховая линия), T = 300 K

Отсутствие характерной дублетной структуры А полосы, типичной для s^2 ионов в кристаллах, является следствием более сильного взаимодействия электронных состояний примесного иона Pb²⁺ с полносимметричной модой Q_1 .

Основная отличительная черта наблюдаемых спектров кристалла LiBaF₃:Pb²⁺ - большой стоксов сдвиг для A' полосы (1.33 эВ) по сравнению с соответствующим значением для кристаллов KZnF₃:Tl⁺ (0.52 эВ) и KMgF₃:Tl⁺ (0.31 эВ). С другой стороны, похожая ситуация наблюдалась для систем BaF₂:Pb²⁺ (стоксов сдвиг составляет 1.27 эВ) [4, 5]. Прямым следствием большой величины стоксова сдвига является факт отсутствия бесфононных линий в спектрах в области низких температур.

Относительно природы A_1 люминесценции мы может утверждать только то, что эта полоса связана с ионами Pb^{2+} . В беспримесных кристаллах LiBaF₃ данная люминесценция не наблюдается. Более того, эта люминесценция возбуждается в том же диапазоне длин, что и A' люминесценция, и проявляет тот же "красный сдвиг" максимума полосы с уменьшением температуры. Поэтому мы можем связать эту полосу с центрами Pb^{2+} , находящимися в некоторой "дефектной" позиции. Другое возможное объяснение – экситонная люминесценция; основанием для такого предположения является факт наблюдения в том же энергетическом диапазоне люминесценции автолокализованных экситонов в беспримесных кристаллах LiBaF₃ (4 – 4.2 эB, [2]).

ЭПР кристаллов LiBaF₃:Pb³⁺

Природный свинец представляет собой смесь четырех изотопов, один из ²⁰⁷Pb I = 1/2. которых имеет ядерный спин Его естественная распространенность – 22,6 %. Парамагнитное трехвалентное состояние с электронной конфигурацией $5d^{10}6s^1$ (основное состояние ${}^2S_{1/2}$) получают при облучении кристаллов, активированных непарамагнитными ионами Pb. В трехсантиметровом ЭПР диапазоне для изотопа ²⁰⁷Pb³⁺ возможно наблюдать следующие переходы: $(F = 1, m_F = 1) \leftrightarrow (F = 1, m_F = 0)$ и $(F = 1, m_F = 0) \leftrightarrow (F = 1)$ 1, $m_F = -1$). Кроме того, в спектрах ЭПР должен присутствовать переход от четных изотопов.

Рис. 14. Спектр ЭПР облученного кристалла LiBaF₃:Pb, T = 30 K, $H||C_4$

В спектре ЭПР (рис. 14) в области *g*=2 наблюдалась группа интенсивных линий, принадлежащих четным изотопам свинца. Кроме того, в районе 5823 Гс и 9232 Гс имелись две группы линий, обязанные сверхтонким переходам изотопа 207 Pb³⁺. Положение центров групп не зависело от ориентации кристаллов в магнитном поле. Это говорит о том, что g-фактор и тензор сверхтонкой структуры изотропны. Рассчитанный параметр сверхтонкой структуры *А* для иона Pb³⁺ в кристалле LiBaF₃ равен 45.84 ± 0.05 ГГц, величина *g*-фактор *g* = 1.996±0.001.

Рис. 15. Зависимость положения уровней энергии иона Pb³⁺ в кристалле LiBaF₃ от величины магнитного поля (сплошные линии – уровни энергии для изотопа ²⁰⁷Pb, штриховые – уровни энергии для четных изотопов)

Зависимость положения уровней энергии от величины магнитного поля для иона Pb³⁺ в кристалле LiBaF₃, построенная с параметрами, определенными из эксперимента, показана на рис. 15. Штриховой линией показан ход уровней энергии для четных изотопов.

Расчет параметров спинового гамильтониана в кластерной модели, представляющей собой парамагнитный центр, окруженный ближайшими к нему лигандами (фторами), и моделирование суперсверхтонкой структуры спектров ЭПР показали, что регулярные центры ионов свинца образуются при

замещении в решетке LiBaF₃ ионов Ba²⁺, которые находятся в кубооктаэдрическом окружении.

В заключении диссертации сформулированы основные результаты:

1. Методами оптической спектроскопии исследованы фторидные кристаллы со структурой перовскита KMgF₃:Tl⁺, KZnF₃:Tl⁺ и LiBaF₃:Pb²⁺ и определены их спектрально-кинетические характеристики.

2. Установлено, что примесные ионы TI^+ в кристаллах KMgF₃, KZnF₃ и ионы Pb²⁺ в кристаллах LiBaF₃ занимают позиции с 12-кратным окружением из ионов фтора с кубической симметрией. На этой основе построена модель, использующая полуклассическую теорию колебаний решетки с учетом эффекта Яна-Теллера в возбужденной 6*sp* электронной конфигурации. Определены параметры модели, построены адиабатические потенциалы, которые позволяют удовлетворительно описать положение полос поглощения и люминесценции, их структуру и температурную трансформацию, а также ряд кинетических характеристик.

3. Установлено, что в спектрах люминесценции кристаллов KMgF₃:Tl⁺, KZnF₃:Tl⁺ и LiBaF₃:Pb²⁺ за счет сверхтонкого взаимодействия и магнитных эффектов, обусловленных ротационными колебаниями комплексов [TlF₁₂] и [PbF₁₂], наблюдается запрещенный переход ${}^{3}\Gamma_{1u} \rightarrow {}^{1}\Gamma_{1g}$.

4. Преобладающий вклад в электронно-колебательное взаимодействие связан с тригональными искажениями ближайшего окружения примесного иона. Большое значение константы связи с этими искажениями для центров ионов Pb^{2+} в кристаллах LiBaF₃:Pb²⁺ по сравнению с KZnF₃:Tl⁺ и KMgF₃:Tl⁺ объясняет существенное отличие люминесцентных свойств этих систем.

5. Методом ЭПР исследованы парамагнитные центры ионов таллия (Tl^{2+}) в кристаллах KZnF₃ и ионов свинца (Pb^{3+}) в кристаллах LiBaF₃. Изучена угловая зависимость спектров ЭПР и установлено, что тензор сверхтонкого взаимодействия и *g*-фактор изотропны. Результаты исследования спектров ЭПР подтвердили структурную модель примесных центров таллия и свинца в изученных кристаллах.

24

Полученные результаты позволяют предположить возможность использования этих систем в качестве активных сред перестраиваемых лазеров в УФ области спектра. В частности, низкоэнергетическая полоса поглощения кристаллов LiBaF₃:Pb²⁺ расположена в спектральной области, удобной для возбуждения эксимерным ArF лазером. Для окончательного решения вопроса о возможности получения лазерной генерации на кристаллах LiBaF₃:Pb²⁺, KZnF₃:Tl⁺ и KMgF₃:Tl⁺ необходимы дополнительные исследования процессов поглощения из возбужденных состояний, определение радиационной стойкости кристаллов, проведение экспериментов по получению лазерной генерации. Результаты, полученные в настоящей работе, могут быть использованы при дальнейших исследованиях в этом направлении.

ЦИТИРУЕМАЯ ЛИТЕРАТУРА

1. Митягин, М.В. Активные среды для перестраиваемых лазеров на основе хромсодержащих фторидов / М.В. Митягин, С.И. Никитин, Н.И. Силкин, А.П. Шкадаревич, Ш.И. Ягудин // Изв. АН СССР, сер.физ. -1990. – Т.54.N6. –С.1512-1516.

2. Nikl, M. Radiation damage processes in wide-gap scintillating crystals. New scintillation materials / M. Nikl, P. Bohacek, E. Mihokova et. al. // Nuclear Physics B (Proc. Suppl.) -1999. – Vol.78. – P. 471-478.

3. Seitz, F. Interpretation of the properties of alkali halide -thallium phosphors / F. Seitz // J. Chem. Phys. -1938.- Vol.6. - P. 150-162.

4. Архангельская, В.А. Поглощение и люминесценция ионов Pb²⁺ в кристаллах щелочноземельных фторидов / В.А. Архангельская, Н.Е. Лущик, В.М. Рейтеров, Х.А. Соовик // Оптика и спектроскопия – 1979. – Т.47. – С. 708-716.

5. Babin, V. The role of Pb^{2+} as a sensitizer for Gd^{3+} – Eu^{3+} downconversion couple in fluorides / V. Babin, K. D. Oskam, P. Vergeer, A. Meijerink // Radiat. Meas. - 2004. – Vol.38. – P. 767-770.

6. Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides / R.D. Shannon // Acta Cryst. A. - 1976. –Vol.32 – P. 751-767.

7. Tsuboi T. Optical studies of s²-ion dimer centers in alkali halide crystals / T. Tsuboi, P W M Jacobs // -1991. Vol.52.N1 - P.69-80.

8. Jacobs, P W M. Alkali halide crystals containing impurity ions with the ns² ground-state electronic configuration / P W M Jacobs // J. Phys. Chem. Solids – 1991. – Vol.52. – P. 35-67.

9. Ranfagni, A. The optical properties of thallium-like impurities / A. Ranfagni, P. Mugnai, M. Bacci, G. Viliani // Adv. Phys -1983. – Vol.32. – P. 823-905.

10. Asano, S. Effet du champ magnetique sur la luminescence de l'ion Pb²⁺ dans les luminophores CaO, CaS, CaSe et MgS / S. Asano, N. Yamashita // Phys. Stat. Sol. B. -1981. Vol.108. -P. 549-558.

11. Toyozawa, Y. Dynamical Jahn-Teller Effect in Alkali Halide Phosphors Containing Heavy Metal Ions / Y. Toyozawa, M. Inoue // J. Phys. Soc. Japan -1966. –Vol.21. –P. 1663-1679.

12. Aminov, L.K. Optical absorption of KZnF₃:Tl⁺ and KMgF₃:Tl⁺ / L.K. Aminov, A.V. Kosach, S.I. Nikitin et. al. // J. Phys.: Condens. Matter -2001. Vol.13. - P. 6247-6258.

13. Абрагам, А. Электронный парамагнитный резонанс переходных ионов / А. Абрагам, Б. Блини. – М.: Мир, 1972. –Т.1. -651с.; 1973. –Т.2. -349с.

ОСНОВНОЕ СОДЕРЖАНИЕ ДИССЕРТАЦИИ ОПУБЛИКОВАНО В РАБОТАХ:

 Photoluminescence of KZnF₃:Tl⁺ and KMgF₃:Tl⁺ crystals / L.K. Aminov, S.I. Nikitin, N.I. Silkin, A.A. Shakhov and R.V. Yusupov // J. Phys.: Condens. Matter -2002. –Vol.14. - P.13835-13856.

- Optical Studies of Pb²⁺ ions in LiBaF₃ crystal / L.K. Aminov, S.I. Nikitin, N.I. Silkin, A.A. Shakhov, R.V. Yusupov, R.Yu Abdulsabirov and S.L. Korableva // J. Phys.: Condens. Matter -2006. –Vol.18. -P.4985-4993.
- EPR of Pb³⁺ ion in LiBaF₃ crystals / L.K. Aminov, D.G. Zverev, G.V. Mamin, S.I. Nikitin, R.V. Yusupov and A.A.Shakhov // Appl. Magn. Reson. -2006. – Vol.30. -P.175-184.
- Люминесценция ионов Tl⁺ в кристаллах KMgF₃ / Аминов Л.К., Никитин С.И., Силкин Н.И., Шахов А.А., Юсупов Р.В. // VI Молодежная научная школа «Когерентная оптика и оптическая спектроскопия», сборник статей, Казань, 2002, С.373-380.
- Оптические и ЭПР исследования кристаллов LiBaF₃:Pb²⁺ / Абдулсабиров Р.Ю., Аминов Л.К., Зверев Д.Г., Кораблева С.Л., Никитин С.И., Силкин Н.И., Шахов А.А., Юсупов Р.В. // VIII Молодежная научная школа «Когерентная оптика и оптическая спектроскопия», сборник статей, Казань, 2004, С.153-159.
- 6. Люминесценция ионов Tl⁺ в кристаллах KZnF₃ и KMgF₃/ Аминов Л.К., Никитин С.И., Силкин Н.И., Шахов А.А., Юсупов Р.В. // Тезисы III Научной конференции молодых ученых, аспирантов и студентов научнообразовательного центра Казанского Государственного Университета «Материалы и технологии XXI века», Казань, 14 – 15 февраля 2003 г.-Казань: Изд-во КГУ.- 2003.- С. 94.
- 7. Люминесценция ионов Pb²⁺ в кристаллах KMgF₃ и LiBaF₃ / Аминов Л.К., Никитин С.И., Силкин Н.И., Шахов А.А., Юсупов Р.В. // Тезисы IV Научной конференции молодых ученых, аспирантов и студентов научнообразовательного центра Казанского Государственного Университета «Материалы и технологии XXI века», Казань, 16 – 17 марта 2004 г.-Казань: Изд-во КГУ.- 2004.- С. 85.
- 8. Исследование энергетической структуры примесных центров s²-ионов в кристаллах фторидных перовскитов / Шахов А.А. // Тезисы V Научной конференции молодых ученых, аспирантов и студентов научно-

образовательного центра Казанского Государственного Университета «Материалы и технологии XXI века», Казань, 26 – 27 апреля 2005 г.-Казань: Изд-во КГУ.- 2005.- С. 83.

- Оптические и ЭПР исследования кристаллов LiBaF₃:Pb²⁺ / Абдулсабиров Р.Ю., Аминов Л.К., Зверев Д.Г., Кораблева С.Л., Никитин С.И., Силкин Н.И., Шахов А.А., Юсупов Р.В. // Тезисы юбилейной конференции физфака КГУ, Казань, 10 ноября 2004 г.- Казань: Изд-во КГУ.- 2004.- С. 58.
- On luminescence of the LiBaF₃:Pb²⁺ / L.K. Aminov, S.I. Nikitin, N.I. Silkin, A.A. Shakhov, R.V. Yusupov, R.Yu Abdulsabirov and S.L. Korableva // Тезисы XII Феофиловского симпозиума по спектроскопии кристаллов, активированных ионами редкоземельных и переходных металлов, Екатеринбург, 22-25 сентября 2004 г. - С.138.