КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

На правах рукописи

ХАЛЕД МОХАМЕД АХМЕД РУМИХ

ВЛИЯНИЕ КАТИОННЫХ ЗАМЕЩЕНИЙ НА МАГНИТНУЮ МИКРОСТРУКТУРУ И НА ЭЛЕКТРОННЫЕ СВОЙСТВА ОКСИДНЫХ МАГНЕТИКОВ С ЯН-ТЕЛЛЕРОВСКИМИ ИОНАМИ

01.04.07-физика конденсированного состояния

Автореферат диссертации на соискание ученой степени кандидата физико-математическсх наук

Работа выполнена на кафедре физики твердого тела Казанского государственного университета им. В. И. Ульянова-Ленина Министерства образования и науки РФ

Научные руководители: доктор физико-математических наук, профессор Садыков Эдгар Камилович кандидат физико-математических. наук, доцент Парфенов Виктор Всеволодович

Официальные оппоненты:

- доктор физико-математических. наук,
 профессор Голенищев-Кутузов Вадим Алексеевич.
- кандидат физико-математических. наук, доцент Губайдуллин Рафаэль Каюмович

Ведущая организация: Казанский физико-технический институт РАН

Защита сос	тоится	<<>>>	2004	Г ОД	ца в	часов на засед	ании
диссертаци	онного	совета	Д212.081.15	фи	изическо	го факультет	а в
Казанском	государ	оственном	университете	ИМ	. В.И. У	льянова-Ленин	на по
адресу: 420	008, г. І	Казань, ул.	Кремлевская,	д. 1	8.		
С диссерт	гацией	ОНЖОМ	ознакомится	В	научной	библиотеке	ИМ.
Н.И.Лобаче	евского	Казанског	о государствен	ног	о универ	ситета	

Автореферат разослан <<__>>> _____2004 г.

Ученый секретарь диссертационного совета, проф.

Еремин М. В.

Актуальность темы

Оксидные соединения широко используются железа каталитическом синтезе органических и неорганических соединений, для получения магнитных материалов, магнитных носителей информации. Ферриты имеют большее удельное сопротивление, чем металлы, поэтому они используются в высокочастотных устройствах радио, телевидении и других электронных устройствах. Использование ферритов как единиц памяти с быстрыми временами переключения было существенно для компьютерной технологии. Ферриты развития являются важным элементом в микроволновых устройствах.

Применение ферритов во многом определяется их фазовым составом и физико-химическими свойствами, зависящими от метода синтеза образцов. Сложность исследований в этой области объясняется многообразием составов оксидных соединений, а также физических и химических явлений, происходящих с участием атомов железа различной валентности на стадии образования твердых фаз, их старения и последующей термообработки.

Наряду с исследованием теоретических закономерностей синтеза, актуальной является задача идентификации фазового состава полученных соединений, их стехиометричности, соотношения металлов в различной степени окисления и т.д.

Ферриты со структурой шпинели являются очень удобными объектами для исследования природы магнитного упорядочения, поскольку наличие только двух кристаллографических узлов значительно облегчает анализ экспериментальных данных и позволяет выявить связь магнитной микроструктуры и магнитных свойств. Кроме того, шпинели позволяют достаточно легко осуществлять различные замещения ионов металла, что дает дополнительную возможность для изучения магнитных взаимодействий, для модификации магнитных и электрических свойств.

Исследования катионного распределения в оксидных магнетиках важны для понимания их основных физических свойств, таких, как намагниченность и температура магнитного фазового перехода, которые зависят не только от состава, но и от распределения катионов металлов по кристаллографическим позициям.

Многие лаборатории мира ведут интенсивные исследования по изучению новых магнитных материалов на основе ферритов и подобных им соединений. Большое внимание уделяется изучению кристаллической структуры ферритов, характера и энергии взаимодействия магнитоактивных ионов, выяснению особенностей магнитных свойств и кинетических явлений в ферритах.

Цель работы

Целью работы являлось исследование эффекта введения катионов Cu^{2+} и Mn^{3+} в ферроманганиты $Ni_{1-x}Cu_xFe_{2-y}Mn_yO_4$ на катионное распределение, электрические и магнитные свойства образцов.

Для достижения поставленной цели необходимо было решить следующие задачи:

- 1. Приготовить ферриты, содержащие два типа ян-теллеровских катионов (Cu^{2+} и Mn^{3+}).
- 2. Изучить влияние замены ионов Ni $^{2+}$ на Cu $^{2+}$ в решётке Ni_{1-x}Cu_xFeMnO₄ (x = 0; 0,2; 0,4; 0,5; 0,6; 0,8; 1,0) и Fe $^{3+}$ на Mn $^{3+}$ в решётке Ni_{0,8}Cu_{0,2}Fe_{2-Y}Mn_YO₄ (y = 0; 0,25; 0,5; 0,75; 1,0) на кристаллическую структуру образцов.
- 3. Исследовать взаимодействие магнитных катионов в ферроманганитах меди-никеля $Ni_{1-x}Cu_xFeMnO_4$ и $Ni_{0,8}Cu_{0,2}Fe_{2-y}Mn_yO_4$ с помощью эффекта Мессбауэра в широком диапазоне температур (20-600 K).
- 4. Изучить макроскопические магнитные свойства и кинетические явления в ферроманганитах.

<u>Научная новизна</u> диссертационной работы состоит в следующем:

- 1. Установлено, что все образцы обеих систем являются шпинелями с кубической симметрией элементарной ячейки, несмотря на наличие в их составе ян-теллеровских катионов меди и марганца.
- 2. данных мессбауэровской спектроскопии Совместный анализ результатов исследования электрических свойств позволил рассчитать катионное распределение в ферроманганитах меди-никеля. При этом в большинстве образцов электрически-активными центрами являются октаэдрические катионы трех- и четырехвалентного марганца, а при содержании марганца $y \le 0.5$ на формульную единицу в $Ni_{0.8}Cu_{0.2}Fe_{2-Y}Mn_YO_4$ электрически-активными центрами будут являться октаэдрические катионы трех- и двухвалентного железа.
- 3. Намагниченность и эффективные магнитные поля для NiFeMnO₄ и $Ni_{0,5}Cu_{0.5}FeMnO_4$ в диапазоне температур 0,47 < T/T_C < 0,92 описываются «законом одной трети».

<u>Практическая</u> значимость. Сопоставление результатов исследования кристаллической и магнитной микроструктуры и макроскопических магнитных и электрических свойств ферроманганитов меди-никеля позволило получить достоверную информацию о катионном распределении в этих образцах. Это необходимо для выбора оптимальных режимов синтеза магнитных материалов с заданными электромагнитными параметрами.

На защиту выносятся основные положения:

- детальные исследования кристаллической и магнитной структуры в 0,2;0,4; $Ni_{1-x}Cu_xFeMnO_4$ (x = 0; 0,6;0.8;1,0) системах $Ni_{0.8}Cu_{0.2}Fe_{2-y}Mn_yO_4$ (y = 0; 0,25; 0,5; 0,75; 1,0) методами рентгеноструктурного анализа (РСА) и мессбауэровской спектроскопии. Обнаружено влияние катионных замещений на параметр кристаллической решетки $Ni_{1-x}Cu_xFeMnO_4$ и $Ni_{0.8}Cu_{0.2}Fe_{2-v}Mn_vO_4$. При этом все образцы

обеих систем являются частично обращенными шпинелями с кубической элементарной ячейкой;

- величина сверхтонкого магнитного поля для NiFeMnO₄ и $Ni_{0,5}Cu_{0.5}FeMnO_4$ зависит от температуры по закону «одной трети», а величина высокотемпературной теплоемкости для этих составов хорошо совпадает с теоретической величиной, предписываемой законом Пти-Дюлонга;
- температурные зависимости электропроводности и термоэдс ферроманганитов, а также частотные зависимости электропроводности образцов свидетельствуют о «прыжковом» характере переноса носителей заряда в этих соединениях;
- обнаружено, что в исследованных ферроманганитах тетра-катионы марганца находятся в степени окисления +2, а в окта-узлах шпинели катионы марганца имеют валентность +3 и +4.

<u>Личный вклад автора.</u> Синтез образцов $Ni_{1-x}Cu_xFeMnO_4$ и $Ni_{0,8}Cu_{0,2}Fe_{2-y}Mn_yO_4$ по керамической технологии. Проведение рентгеноструктурных и мессбауэровских исследований. Анализ данных структурных, мессбауэровских, электрических и магнитных измерений.

Апробация работы. Основные результаты работы докладывались и VIII обсуждались международной научной конференции на "Мессбауэровская спектроскопия и ее применения". (Санкт-Петербург, "Магнитные материалы и 2002), международной конференции применение". (Минск, 2002), "International Conference on the Applications of the Mössbauer Effect", (ICAME). (Masskat, 2003), IX Международной "Мёссбауэровская конференции спектроскопия и её применения", (Екатеринбург, 2004), 8-th International conference "Solid state physics", (Almaty, Kasakhstan, 2004).

<u>Публикации.</u> Основное содержание диссертации опубликовано в 2 статьях в центральной печати, одна статья - в печати (получена корректура) и еще 5 тезисах Международных конференций.

<u>Структура и объем диссертации.</u> Диссертация состоит из введения, четырёх глав и зключения, содержит 100 страниц текста, в том числе 34 рисунка, 11 таблиц, список литературы из 54 наименований.

В первой главе представлен обзор экспериментальных результатов по структуре и физическим свойствам ферритов. Детально рассмотрены теоретические и прикладные аспекты мессбауэровской спектроскопии. Отмечается, что несмотря на достаточно продолжительную историю изучения катионного распределения в ферритах различными методами (включая и мессбауэровскую спектроскопию), не существует однозначного мнения по поводу кристаллохимической формулы даже такого относительного простого объекта, как феррит меди [1].

Еще более запутанным и сложным является вопрос о структурном положении и валентном состоянии катионов в манганитах. В частности, в работе [2] распределение ферритакатионное ДЛЯ шпинели $Ni_{x}Mn_{1-v-x}Fe_{2+v}O_{4}$ рассчитано по величине термоэдс в предположении, что катионы Mn²⁺ располагаются в A- и B-узлах. В то же время, в работах [3] и [4] предполагается, что в обеих кристаллографических позициях присутствует только трехвалентный марганец, а по мнению авторов [5], в тетраэдрических и октаэдрических узлах шпинели NiMn₂O₄ будут находиться катионы ${\rm Mn}^{2+}$ и ${\rm Mn}^{4+}$, соответственно. Нам неизвестны работы, где был бы выполнен анализ структурного положения и валентного состояния катионов в таких сложных шпинелях, какими являются исследованные нами ферроманганиты меди-никеля.

Во второй главе описываются синтез ферроманганитов меди-никеля и методики экспериментов по исследованию кристаллической и магнитной структуры, электрических и магнитных параметров образцов.

Ферроманганиты системы $Ni_{1-x}Cu_xFeMnO_4$, где (x) варьируется от 0 до 1,0 с шагом 0,2 и системы $Ni_{0.8}Cu_{x0.2}Fe_{2-y}Mn_yO_4$ где (y) варьируется от 0 до 1,0 с шагом 0,25 были приготовлены по керамической технологии. В качестве сырья брались нормальные оксиды входящих в состав шпинели металлов: NiO, CuO, α -Fe₂O₃, и Mn_2O_3 . Окислы были хорошо перемешаны и перемолоты в агатовой ступе. Спекание производилось при температурах 1233–1473 К для системы $Ni_{1-x}Cu_xFeMnO_4$ и при 1223–1423 К для системы $Ni_{0.8}Cu_{x0.2}Fe_{2-y}Mn_yO_4$, далее следовало медленное охлаждение до комнатной температуры. После повторного помола образцы прессовались и снова спекались в течение 8 часов с медленным охлаждением до комнатной температуры.

Рентгенографические измерения проводились на дифрактометрах типа ДРОН (ДРОН-2 и ДРОН-3М). Рентгенограммы на ДРОН-2 получены на Со K_{α} - излучении, а на ДРОН-3М — на Си K_{α} - излучении. Все измерения проводились при комнатной температуре.

Мессбауэровские спектры были измерены при температурах от 20 К до 628 К на спектрометре с постоянным ускорением. Источник - 57 Co с начальной активностью 70 милликюри. Оптимальный вес поглотителя – приблизительно 10 мг/см² по железу. Температурные измерения сделаны с использованием мессбауэровского криостата замкнутого цикла REF-1665-OEG. Набор статистики, равный 4×10^5 имп/канал, при линейности поддержания скорости не худшей 0,5%, позволил определить положение линий мессбауэровского спектра с точностью $\approx 0,02$ мм/с.

Мессбауэровские спектры обработаны с помощью стандартной программы UNIVEM.

Измерения электропроводности на постоянном токе выполнены четырехзондовым методом (в геометри Ван дер-Пау) для низкоомных образцов и двухзондовым методом - для высокоомных. В последнем случае омические контакты к образцам создавались из индий-галлиевого

сплава. Температурные зависимости электропроводности и термоэдс ферритов изучены в диапазоне температур 295–520 К. Частотные зависимости электропроводности измерены в диапазоне частот 100-3.10⁷ Гц. Измерения намагниченности выполнены методом Фарадея в диапазоне температур 80-1033 К.

В третьей главе обсуждаются результаты исследования кристаллической структуры и сверхтонкой структуры (СТС) мессбауэровских спектров ферроманганитов $Ni_{1-x}Cu_xFeMnO_4$.

По данным РСА все образцы являются однофазными шпинелями с кубической кристаллической решеткой, несмотря на наличие в составе янтеллеровских катионов Mn³⁺ и Cu²⁺. Для сравнения в таблице 1 приведены наши данные по рентгеноструктурному анализу феррита меди – шпинели с тетрагонально-искаженной кристаллической решеткой. Видно, что величина параметра тетрагональности для этого феррита существенно превышает ошибку измерений.

Параметр кристаллической решетки постоянен до x = 0.6 и линейно растет при большем содержании меди (Табл.1). Причиной роста параметра кристаллической решетки с ростом x, по-видимому, является больший ионный радиус катиона $\mathrm{Cu}^{2+}(0.72\mathrm{\AA})$ по сравнению с ионным радиусом $\mathrm{Ni}^{2+}(0.69~\mathrm{\AA})$.

Таблица 1. Постоянные кристаллической решетки $Ni_{1-x}Cu_xMnFeO_4$.

Х	Образец	a (Å)
-	NiFe ₂ O ₄	8.342±0.003
0.0	NiMnFeO ₄	8.366±0.003
0.2	Ni _{0.8} Cu _{0.2} MnFeO ₄	8.367±0.003
0.4	$Ni_{0.6}Cu_{0.4}MnFeO_4$	8.372±0.003
0.5	$Ni_{0.5}Cu_{0.5}MnFeO_4$	8.372±0.004
0.6	$Ni_{0.4}Cu_{0.6}MnFeO_4$	8.373±0.005
0.8	$Ni_{0.2}Cu_{0.8}MnFeO_4$	8.383±0.009
1.0	CuMnFeO ₄	8.402±0.007
-	CuFe ₂ O ₄	$a = 8.241$, $c = 8.641 \pm 0.003$

На рис.1 приведены мессбауэровские спектры образцов, полученные при комнатной температуре. В исследованных образцах имеются 3d-катионы четырех типов (Ni, Cu, Fe, Mn). В этих условиях задача обработки мессбауэровских спектров с разложением их на парциальные спектры, отвечающие разному окружению катиона железа, многопараметрической и нереальной при имеющейся точности измерений. Поэтому при математической обработке спектров было выполнено разложение спектра только на две компоненты, соответствующие зеемановским секстетам, отвечающим трехвалентным катионам железа в А- и В-позициях шпинельной решетки. Можно отметить, что кроме этих двух секстетов в спектрах некоторых образцов наблюдается также небольшой интенсивности (4-6% от общей квадрупольный дублет площади под линиями спектра). Он связан с появлением в образцах, богатых медью, второй фазы, которой вероятно, является феррит состава CuFeO₂, парамагнитный при комнатной температуре.

Таблица 2. Температуры Кюри и параметры мессбауэровских спектров — изомерные сдвиги (IS), квадрупольные расщепления (QS), сверхтонкие поля (H_{hf}) и относительные интенсивности A и B-секстетов S_{A/S_B} для ферроманганитов $Ni_{1-x}Cu_xFeMnO_4$ при 295 K

X	T _C K	IS (A)	IS (B)	$H_{hf}(A)$	H _{hf} (B)	QS (A)	QS (B)	S_A/S_B
		(MM/c)	mm/s	(кЭ)	(кЭ)	(MM/c)	(MM/c)	
0.0	628	0.313	0.407	463	483	-0.0192	0.0759	2.70
0.2	593	0.293	0.373	454	474	-0.0422	0.0264	1.38
0.4	549	0.311	0.365	445	466	-0.0222	0.0923	1.86
0.5	533	0.325	0.353	435	458	-0.0285	0.0164	1.50
0.6	508	0.325	0.349	435	456	0.0350	0.0430	2.12
0.8	498	0.331	0.374	430	549	-0.0356	0.0664	3.00
1.0	483	0.345	0.342	432	442	0.0035	0.0128	3.00

Погрешность измерения $T_C = \pm 5$ K, $IS = \pm 0.002$ mm/s, $H_{hf} = \pm 5$ kOe.

Рис. 1. Мессбауэровские спектры некоторых образцов $Ni_{1-x}Cu_xFeMnO_4$ при комнатной температуре.

C ростом содержания образца меди В составе растет электропроводность на постоянном токе и высокочастотная проводимость, а энергия активации проводимости уменьшается. Все образцы, за исключением №3, обнаруживают дырочную проводимость. Термоэдс близка по величине к термоэдс металлов и вырожденных И практически не зависит от температуры. полупроводников наблюдается какой-либо выраженной корреляции термоэдс с составом образцов (Табл.3).

Температурные зависимости проводимости и термоэдс, а также зависимость $\sigma(\omega)$ являются типичными для вервеевской "прыжковой" проводимости. Для решения вопроса о природе центров, между которыми происходит перенос носителей заряда, рассмотрим наиболее общий

Таблица 3. Электрические параметры ферроманганитов (приведены данные для T = 300 K).

образец	Е _А , эВ	σ, (Oм.cм) ⁻¹	Θ, мкВ/К
NiMnFeO ₄	0,39	$4,7 \cdot 10^{-4}$	31
Ni _{0.8} Cu _{0.2} MnFeO ₄	0,28	$1,1\cdot 10^{-3}$	17
Ni _{0.6} Cu _{0.4} MnFeO ₄	0,23	$1,02 \cdot 10^{-3}$	-12
Ni _{0.5} Cu _{0.5} MnFeO ₄	0,24	$1,3\cdot 10^{-3}$	62
Ni _{0.4} Cu _{0.6} MnFeO ₄	0,25	$2,5\cdot 10^{-3}$	10
Ni _{0.2} Cu _{0.8} MnFeO ₄	0,23	$2,7\cdot 10^{-3}$	60
CuMnFeO ₄	0,19	$7,7\cdot 10^{-3}$	97

катионного распределения в данных шпинелях. Из всех структурообразующих катионов ионы Ni имеют выраженное предпочтение к октаэдрическому окружению и в шпинелях обычно двухвалентны. Все остальные катионы могут размещаться как в А-, так и в В-узлах [6]. Октакатионы меди и марганца в шпинелях имеют высокие степени окисления: +2 и +3, соответственно. Ионы Fe в A- и B-позициях обычно трехвалентны, но в В-узлах также могут иметь валентность от +2 до +4. Ионы Си в Аузлах могут иметь валентность +2 и +1. Но ионы марганца в А-узлах всегда имеют валентность +2. Отсюда следует, что часть ионов Мп или Fe будут В-узлах четырехвалентными. Поскольку мессбауэровские параметры однозначно свидетельствуют о том, что ионы железа находятся в состоянии Fe³⁺, наиболее вероятным вариантом является, по нашему мнению, окисление части окта-ионов марганца до четырехвалентного состояния. С учетом валентности структуро-образующих катионов кристаллохимическая формула изученных ферроманганитов запишется как

$$(Cu_t^{2+}Mn_z^{2+}Fe_{1-z-t}^{3+})[Ni_{1-x}^{2+}Cu_{x-t}^{2+}Mn_{1-2z}^{3+}Mn_z^{4+}Fe_{z+t}^{3+}]O_4$$
.

Здесь мы полагаем, что все тетра-ионы меди двухвалентны и дефектность по кислороду отсутствует. Центрами, между которыми происходит обмен носителями заряда, таким образом являются ионы трехи четырехвалентного марганца. При z < 1-2z будет наблюдаться дырочная

проводимость, в противоположном случае — электронная. Используя известное соотношение Хейкеса-Джонсона для "прыжковой" термоэдс [6], которое для нашего случая выглядит, как:

$$\Theta = \frac{\mathbf{k}}{\mathbf{e}} \ln \frac{1 - 2\mathbf{z}}{\mathbf{z}},\tag{1}$$

по измеренным значениям термоэдс мы рассчитали величину параметра z. Величина другого параметра - t определялась из отношения площадей зеемановских секстетов, отвечающих ионам железа в A и B подрешетках:

$$\frac{1-z-t}{z+t} = \frac{S_A}{S_B}.$$
 (2)

Полученное таким образом катионное распределение (с учетом валентного состояния) для ферроманганитов $Ni_{1-X}Cu_XFeMnO_4$ приведено в Табл.4. Видно, что содержание марганца в А-узлах шпинели незначительно зависит от состава образца. В образцах с большим содержанием меди увеличивается содержание в А-узлах этих катионов за счет уменьшения содержания железа.

Таблица 4. Катионное распределение ферроманганитов $Ni_{1-x}Cu_xFeMnO_4$

	111_{-x} 011_{x} 011_{x} 011_{x}
№	Катионное распределение
1	$(Mn_{0,27}^{2+}Fe_{0,73}^{3+})[Ni^{2+}Mn_{0,46}^{3+}Mn_{0,27}^{4+}Fe_{0,27}^{3+}]O_4$
2	$(Cu_{0,12}^{2+}Mn_{0,30}^{2+}Fe_{0,58}^{3+})[Cu_{0,08}^{2+}Ni_{0,80}^{2+}Mn_{0,40}^{3+}Mn_{0,30}^{4+}Fe_{0,42}^{3+}]O_{4}$
3	$ (\mathrm{Mn}_{0,35}^{2+} \mathrm{Fe}_{0,65}^{3+}) [\mathrm{Cu}_{0,40}^{2+} \mathrm{Ni}_{0,60}^{2+} \mathrm{Mn}_{0,30}^{3+} \mathrm{Mn}_{0,35}^{4+} \mathrm{Fe}_{0,35}^{3+}] \mathrm{O}_{4} $
4	$(Cu_{0,15}^{2+}Mn_{0,25}^{2+}Fe_{0,60}^{3+})[Cu_{0,35}^{2+}Ni_{0,50}^{2+}Mn_{0,50}^{3+}Mn_{0,25}^{4+}Fe_{0,40}^{3+}]O_{4}$
5	$(\mathrm{Mn}_{0,32}^{2+}\mathrm{Fe}_{0,68}^{3+})[\mathrm{Cu}_{0,60}^{2+}\mathrm{Ni}_{0,40}^{2+}\mathrm{Mn}_{0,36}^{3+}\mathrm{Mn}_{0,32}^{4+}\mathrm{Fe}_{0,32}^{3+}]\mathrm{O}_{4}$
6	$(\mathrm{Mn}_{0,25}^{2+}\mathrm{Fe}_{0,75}^{3+})[\mathrm{Cu}_{0,80}^{2+}\mathrm{Ni}_{0,20}^{2+}\mathrm{Mn}_{0,50}^{3+}\mathrm{Mn}_{0,25}^{4+}\mathrm{Fe}_{0,25}^{3+}]\mathrm{O}_{4}$
7	$(Cu_{0,05}^{2+}Mn_{0,20}^{2+}Fe_{0,75}^{3+})[Cu_{0,95}^{2+}Mn_{0,60}^{3+}Mn_{0,20}^{4+}Fe_{0,25}^{3+}]O_4$

На рисунках 2 и 3 показаны мессбауэровские спектры при различной температуре для NiFeMnO₄ и $Cu_{0.5}Ni_{0.5}FeMnO_4$. Температурный сдвиг

пропорционален кинетической энергии движения (колебания) ядра 57 Fe. Используя гармоническое приближение для колебаний решетки, получаем величину теплоемкости (C_p), приходящейся на одно ядро 57 Fe [7]:

$$C_p = -2Mc^2 (1/\nu) (\partial (\delta_{SOD})/\partial T)$$
 эрг/моль. K (3)

Здесь М — масса ядра 57 Fe, с- скорость света, v-частота γ -кванта и (δ_{SOD}) - температурный сдвиг в единицах частоты. Рассчитанные таким образом из мессбауэровского эксперимента величины теплоёмкости (C_p) для NiFeMnO4 и $Cu_{0.5}Ni_{0.5}FeMnO_4$ хорошо согласуются с классическими результатами и с результатами аналогичных оценок в литературе [8] величины для (C_p) 57 Fe = 6 кал/моль. К.

Figure 2: Mössbauer spectra for NiFeMnO₄ at different temperati V- velocity [mm/sec]

Figure 3: Mössbauer spectra for Cu_{0.5}Ni_{0.5}FeMnO₄ at different emperatures. V-velocity [mm/sec]

На рис. 4 представлены температурные зависимости сверхтонких полей для катионов железа в A и B-узлах NiFeMnO₄ и Cu_{0.5}Ni_{0.5}FeMnO₄. Далее мы полагаем, что внутреннее поле пропорционально намагниченности подрешетки M_S . Как видно из рис. 4, намагниченность уменьшается до нуля при $T = T_C$. Относительная намагниченность подрешетки вблизи фазового перехода (Tc) как функция температуры T описывается выражением:

$$M_S(T)/M_S(0) = D [1-T/T_C]^{\beta}$$
 (4)

где $M_s(T)$ - намагниченность подрешетки при данной температуре. Значение β составляет 0.34 для A и B подрешеток, что ближе к 1/3, а не 1/2 (приближение теории молекулярного поля), и согласуется с теоретическим значением. Таким образом, намагниченности для $NiFeMnO_4$ и $Ni_{0.5}Cu_{0.5}FeMnO_4$ подчиняются закону «одной трети» [9].

Puc.4. Зависимость сверхтонких полей от температуры для $NiFeMnO_4$ и $Cu_{0.5}Ni_{0.5}FeMnO_4$.

В четвертой главе обсуждаются результаты исследования кристаллической структуры и сверхтонкой структуры (СТС) мессбауэровских спектров ферроманганитов $Ni_{0,8}Cu_{0,2}Fe_{2-y}Mn_yO_4$.

По данным PCA все образцы являются однофазными шпинелями с кубической кристаллической решеткой. Причиной роста параметра кристаллической решетки, по-видимому, является большая величина ионного радиуса катиона Mn³⁺(0,71Å) по сравнению с ионным радиусом Fe^{3+} (0,67 Å). На рис.5 приведены мессбауэровские спектры исследованных образцов при комнатной температуре. При анализе было выполнено разложение спектров на две компоненты, соответствующие зеемановским секстетам, отвечающим трехвалентным катионам железа в А- и Впозициях шпинельной решетки. Также, как и для ферроманганитов Ni_{1-x}Cu_xFeMnO₄, квадрупольный дублет небольшой интенсивности (1-6% от общей площади под линиями спектра) в мессбауэровских спектрах образцов этой серии может отвечать ферриту CuFeO₂, парамагнитному при комнатной температуре, наличию составе керамики или В мелкодисперсных суперпарамагнитных частиц. Этот дублет исчезал при понижении температуры измерения до Т=20 К (рис. 6).

 $Puc 5. \ Meccбayэpoвские спектры ферроманганитов <math>Ni_{0.8}Cu_{0.2}Fe_{2-y}Mn_yO_4npu\ T=295K.$

Величина эффективного сверхтонкого поля убывает с ростом концентрации катионов марганца для обеих подрешеток. Также убывает температура магнитного фазового перехода. Это связано с замещением катиона железа на катионы марганца, имеющие меньший магнитный момент (Табл.5).

 $Puc.6.\ Meccбауэровские спектры ферроманганитов <math>Ni_{0.8}Cu_{0.2}Fe_{2-Y}Mn_YO_4$ при $20\ K$.

Таблица 5. Постоянные кристаллической решетки, температуры Кюри и параметры мессбауэровских спектров — изомерные сдвиги (IS), квадрупольные расщепления (QS), сверхтонкие поля (H_{hf}) и относительные интенсивности A и B-секстетов S_A для ферроманганитов

 $Ni_{0.8}Cu_{0.2}Mn_YFe_{2-Y}O_4$ (T = 295K).

	<u>d</u>		H _{hf} , A	IS, A	QS, A	H _{hf} , B	IS, B	QS, B	S _A /
Y	(a)Å	Т _С , К	(кЭ)	(мм/с)	(мм/с)	(кЭ)	(мм/с)	(мм/с)	$/S_{B}$
0.0	8,343	823	487	0.23	0.01	512	0.34	0.001	1.0
0.25	8,334	788	483	0.26	0.02	515	0.36	0.02	1.33
0.5	8,347	743	477	0.26	0.01	505	0.39	0.09	1.75
0.75	8,348	683	465	0.26	-0.01	481	0.37	0.04	1.64
1.0	8,367	593	454	0.29	-0.04	474	0.37	0.03	1.38

Погрешности измерений: a (Å) = ± 0.003 ; $T_C = \pm 5$ K; $IS = \pm 0.002$ мм/с; $H_{hf} = \pm 5$ кЭ.

Для образцов системы 2 ($Ni_{0.8}Cu_{0.2}Mn_YFe_{2-Y}O_4$), электропроводность существенно меньше электропроводности образцов системы 1 (Табл.6). Самый низкоомный из образцов системы 2 (у = 1) является одновременно одним из самых высокоомных образцов системы 1 (x = 0,2). В целом наблюдается рост электропроводности с ростом концентрации марганца, эта немонотонная минимальное НО зависимость значение электропроводности наблюдается для образца с у = 0,5. Такая же зависимость наблюдается ДЛЯ немонотонная энергии активации электропроводности образцов этой серии. Образцы высоким содержанием марганца имеют проводимость дырочного типа, в то время как образцы с y = 0; y = 0.25 и y = 0.5 — электронные полупроводники с большим значением термоэдс. В пределах погрешности измерений их термоэдс также не зависит от температуры, что характерно для "прыжковой" проводимости.

Таблица 6. Электрические параметры ферроманганитов (приведены данные для $T = 300 \ K$).

No	Состав	Е _А , эВ	σ, (Oм.cм) ⁻¹	θ, мкВ/К
0	$Ni_{0.8}Cu_{0.2}Fe_2O_4$	0,53	$1,75 \cdot 10^{-8}$	-1400
1	$Ni_{0.8}Cu_{0.2}Mn_{0,25}Fe_{1.75}O_4$	0,52	$6,07 \cdot 10^{-9}$	-490
2	$Ni_{0.8}Cu_{0.2}Mn_{0,5}Fe_{1,5}O_4$	0,76	$2,94 \cdot 10^{-12}$	-1900
3	$Ni_{0.8}Cu_{0.2}Mn_{0,75}Fe_{1,25}O_4$	0,24	4,5·10 ⁻⁵	38
4	Ni _{0.8} Cu _{0.2} MnFeO ₄	0,28	$2,5\cdot 10^{-3}$	20

Для решения вопроса о природе центров, между которыми происходит перенос носителей заряда, используиется те же предположения, что и для ферроманганитов системы, рассмотренной в Гл.3. Поскольку изомерный сдвиг, квадрупольное расщепление и величина эффективного магнитного поля для $Ni_{0,8}Cu_{0,2}Fe_{2-Y}Mn_YO_4$ также однозначно свидетельствуют о трехвалентном состоянии катионов железа, наиболее вероятным вариантом является, по нашему мнению, появление в окта-

узлах шпинели катионов четырехвалентного марганца. С учетом валентности структурообразующих катионов кристаллохимическая формула изученных ферроманганитов запишется, как:

$$(Cu_t^{2+}Mn_z^{2+}Fe_{1-z-t}^{3+})[Ni_{0,8}^{2+}Cu_{0,2}^{2+}Mn_{Y-2z}^{3+}Mn_z^{4+}Fe_{1-Y+z+t}^{3+}]O_4$$

Здесь мы полагаем, что все тетра-ионы меди двухвалентны и в первом приближении пренебрегаем появлением дефектов в кислородной подрешетке. Тогда, как и для ферроманганитов, рассмотренных ранее, центрами, между которыми происходит обмен носителями заряда, будут являться ионы трех- и четырехвалентного марганца. Как будет показано ниже, эти предположения, в частности — предположение об отсутствии дефектов в кислородной подрешетке, для ферроманганитов данной системы потребуют некоторой коррекции. Но в первом приближении, используя соотношение Хейкеса-Джонсона для "прыжковой" термоэдс, которое для вышеприведенного катионного распределения выглядит как

$$\theta = \frac{k}{e} \ln \frac{y - 2z}{z} \,, \tag{5}$$

по измеренным значениям термоэдс мы рассчитали величину параметра z для образцов, обладающих дырочной проводимостью. Величина другого параметра - t определялась из отношения площадей зеемановских секстетов, отвечающих ионам железа в A и B подрешетках:

$$\frac{1 - z - t}{1 - y + z + t} = \frac{S_A}{S_B}$$
 (6)

Полученное таким образом катионное распределение (с учетом валентного состояния) для ферроманганитов приведено в Табл. 7. Видно, что образцы Y = 0.75 и Y = 1.0 являются частично-обращенными шпинелями. В них содержание катионов марганца и железа в A-узлах шпинели незначительно зависит от состава образца, а катионы меди в целом имеют предпочтение к размещению в окта-узлах шпинели. В то же время, для первых трех образцов наблюдаются отличия и в катионном

распределении, и в природе центров, ответственных за электрические свойства ферритов.

Анализ мессбауэровских спектров образцов Y=0 - 0,5 показал, что они являются полностью обращенными шпинелями, в A-позициях которых содержатся только катионы Fe^{3+} , т.е. в формуле для катионного распределения индексы z=t=0. Следовательно, в A-позициях будут отсутствовать катионы Mn^{2+} , а в B -позициях катионы Mn^{4+} .

Высокое удельное сопротивление и большая по величине и отрицательная по знаку термоэдс первых трех образцов системы $Ni_{0,8}Cu_{0,2}Fe_{2-Y}Mn_YO_4$ обязаны, по нашему мнению, наличию в этих ферроманганитах незначительного количества ионов Fe^{2+} вследствие нестехиометрии по кислороду. Количество этих катионов, рассчитанное по термоэдс, дало величину 0,003 на формульную единицу для образца Ne 2 и на 2 порядка меньшие величины для шпинелей Ne 1 и Ne 3. Окончательно для первых трех образцов катионное распределение можно записать в виде:

 $(\mathrm{Fe^{3+}})[\mathrm{Ni_{0,8}^{2+}Cu_{0,2}^{2+}Mn_Y^{3+}Fe_{1-Y-c}^{3+}Fe_c^{2+}}]\mathrm{O_{4-c}}$ Таблица 7. Катионное распределение в ферроманганитах $Ni_{0,8}Cu_{0,2}Fe_{2-Y}Mn_YO_4$

№	Катионное распределение
1	$(Fe^{3+})[Ni_{0,8}^{2+}Cu_{0,2}^{2+}Fe^{3+}]O_4$
2	$(Fe^{3+})[Ni_{0,8}^{2+}Cu_{0,2}^{2+}Mn_{0,25}^{3+}Fe_{0,747}^{3+}Fe_{0,003}^{2+}]O_{3,997}$
3	$(Fe^{3+})[Ni_{0,8}^{2+}Cu_{0,2}^{2+}Mn_{0,5}^{3+}Fe_{0,5}^{3+}]O_4$
4	$(Mn_{0,22}^{2+}Fe_{0,78}^{3+})[Cu_{0,2}^{2+}Ni_{0,8}^{2+}Mn_{0,31}^{3+}Mn_{0,22}^{4+}Fe_{0,47}^{3+}]O_{4}$
5	$(Cu_{0,12}^{2+}Mn_{0,30}^{2+}Fe_{0,58}^{3+})[Cu_{0,08}^{2+}Ni_{0,80}^{2+}Mn_{0,40}^{3+}Mn_{0,30}^{4+}Fe_{0,42}^{3+}]O_{4}$

В заключение отметим, что наблюдается корреляция между величиной квадрупольного расщепления для В-подрешетки и

электрическими параметрами исследованных ферроманганитов. Причина такой корреляции неясна, как не совсем понятна и немонотонная зависимость электрических параметров от концентрации марганца. Возможно, что образец Y=0,5 отличается по кристаллической текстуре от остальных образцов серии.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ.

В ходе выполнения данной работы нами проведен синтез по керамической технологии ферроманганитов $Ni_{0,8}Cu_{0,2}Fe_{2-Y}Mn_YO_4$ и $Ni_{1-X}Cu_XFeMnO_4$ и исследованы их кристаллическая структура, мессбауэровские спектры, магнитные и электрические свойства в широком диапазоне температур (20-700 К). Комплексные исследования этих двух систем оксидных магнетиков позволили сделать следующие выводы:

- 1. Установлено, что все образцы обеих систем являются шпинелями с кубической симметрией элементарной ячейки. Об этом говорят данные рентгеноструктурного анализа, а также малая величина квадрупольного расщепления в мессбауэровских спектрах.
- 2. Эффективные магнитные поля тетра- и окта-подрешеток убывают с ростом содержания меди и марганца в составе образцов, что связано с меньшей величиной магнитных моментов замещающих катионов. Измерения макроскопической намагниченности согласуются измерениями сверхтонкой структуры мессбауэровских спектров и показывают уменьшение температуры Кюри с ростом содержания меди в системе 1 и с ростом содержания марганца в системе 2.
- 3. Электрические свойства ферроманганитов статическая, высокочастотная электропроводность и термоэдс в диапазоне температур 295-520 К хорошо описывается моделью термически-активированных перескоков носителей заряда между центрами локализации.
- 4. Совместный анализ данных мессбауэровской спектроскопии и результатов исследования электрических свойств позволил установить, что

- в большинстве исследованных образцов электрически-активными центрами являются октаэдрические катионы трех- и четырехвалентного марганца.
- 5. При содержании марганца у $\leq 0,5$ на формульную единицу в $Ni_{0,8}Cu_{0,2}Fe_{2-Y}Mn_YO_4$ катионное распределение соответствует полностью обращенной шпинели и электрически-активными центрами будут являться октаэдрические катионы трех- и двухвалентного железа. Появление последних, по-видимому, связано с наличием дефектов в анионной (кислородной) подрешетке.
- 6. Намагниченность и эффективные магнитные поля для NiFeMnO₄ и $Ni_{0.5}Cu_{0.5}FeMnO_4$ в диапазоне температур $0,47 < T/T_C < 0,92$ описываются «законом одной трети».

АВТОРСКИЙ СПИСОК ПУБЛИКАЦИЙ

- А1. Парфенов В.В. Влияние позиции и степени окисления катионов на злектрические и магнитные свойства $Ni_{1-X}Cu_XFeMnO_4$ / В.В.Парфенов, <u>X. М. Румих</u>, Р.А.Манапов, Ш.З. Ибрагимов //Неорганические Материалы. 2003. Т. 39. $Noldsymbol{Noldsymbol{O}}$ 12. С. 1517-1521.
- А2. Парфенов В.В. Катионное распределение в ферроманганитах $Ni_{1-X}Cu_XFeMnO_4$ и $Ni_{0,8}Cu_{0,2}Fe_{2-Y}Mn_YO_4$ со структурой шпинели / В.В. Парфенов, <u>Х. М. Румих</u>, Р.А. Манапов, Ш.З.Ибрагимов, А. В.Пятаев, Л. Р. Галеева // Электронный журнал «Исследовано в России». №170. С. 1824-1835, http://zhurnal.ape.relarn.ru./articles/2004/170.pdf
- A3. <u>Roumaih Kh.</u>, Mössbauer studies of Cu_{1-x}Ni_xFeMnO₄ spinel Ferrites / <u>Kh. Roumaih</u>, R. A. Manapov, E. K Sadykov, and A. V. Pyataev // Journal of Magnetism and Magnetic Materials (In press).
- A4. <u>Румех X.</u>, Катионное распределение и электронные свойства сложных железо-марганцевых оксидов со структурой шпинели $Cu_xNi_{1-x}FeMnO_4$ /, <u>X. Румех</u>, В.В.Парфенов, Р.А.Манапов, //Тезисы

- международной конференции "Мессбауэровская спектроскопия и ее применения". Санкт-Петербург, 2002, с 162.
- А5. Парфенов В.В., Влияние структурного положения и валентного состояния катионов на электрические и магнитные свойства ферроманганитов $Cu_xNi_{1-x}FeMnO_4$ со структурой шпинели / В.В.Парфенов, Р.А.Манапов, <u>X. Румех</u>. // Тезисы международной конференции "Магнитные материалы и их применение". Минск, 2002, с.60-61.
- A6. Roumaih Kh., Mössbauer spectral study of the system Ni_{1-X}Cu_XFeMnO₄ / Kh. Roumaih, E. K. Sadykov R. A. Manapov, and A. V. Pyataev // Abstract of International Conference on the Applications of the Mössbauer Effect (ICAME). Masskat, 2003. P. T8/16.
- A7. <u>Халед Румех</u>, Электрические и магнитные свойства системы $Cu_{1-x}Ni_xFeMnO_4$ / <u>Халед Румех</u>, Р.А.Манапов, В.В. Парфенов, Ш.З. Ибрагимов, Э.К. Садыков, А.В. Пятаев // Тезисы IX Международной конференции "Мёссбауэровская спектроскопия и её применения". Екатеринбург, 2004, с 26.
- A8. Roumaih Kh., On the Study Properties of the System $Cu_{1-X}Ni_XFe_{2-Y}Mn_YO_4$ / Kh. Roumaih, R. A. Manapov, V. V. Parfenov, S. Z. Ibragimov and A. V. Pyataev // Abstract « 8-th International Conference on the Solid State physics». Kazakhstan, Almaty-2004, p.438-439.

ЦИТИРУЕМАЯ ЛИТЕРАТУРА

- 1. Muthukumarasam P.N. T., and Narayanasamy A., J. Phys. C: Solid, (1982), v.15, p. 157.
- 2. Qiangmin Wei, and Brian W. Robertson, J. Solid. State. Chemistry, (2003), 176, 279-283.
- 3. O'Keeffe M., J. Phys. Chem. Solids, 1961, 21; 172.
- 4. Boacher B., Buhl R. and Perrin M., Act. Cryst. 1969, p.2326.

- 5. Goodenough J. B., «Magnetism and the Chemical Bond»- Inter Science and Wiley, Now York, 1963, 200 p.
- 6. Крупичка С. Физика ферритов и родственных им магнитных окислов. М., Мир, 1976, Т. 2. 502 с.
- 7. Eibschultz M., Shtrikman S. and Treves D., Phys. Rev. 1967, v.156, p. 562.
- 8. Ata-Allah S.S and Fayek M.K, Hyperfine Interaction (2000), v128, p. 467
- 9. Essam J.W., and Fisher M. F., J. Chem. Phys., (1963), v.38, p. 802.