На правах рукописи

Ибрагимова Дина Шамилевна

СИНТЕЗ НОВЫХ ПРОИЗВОДНЫХ П-ТРЕТ-БУТИЛТИАКАЛИКС[4]АРЕНА, БИС- И ТРИС-КАЛИКС[4]АРЕНОВ.

02.00.03 – органическая химия

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата химических наук

Работа выполнена на кафедре органической химии Химического института им. А.М.Бутлерова Государственного образовательного учреждения высшего профессионального образования "Казанский государственный университет им. В.И.Ульянова-Ленина" Министерства образования и науки Российской Федерации.

Научный руководитель кандидат химических наук,

доцент Стойков Иван Иванович

Официальные оппоненты доктор химических наук

Мамедов Вахид Абдулла-оглы

доктор химических наук,

профессор Овчинников Виталий Витальевич

Ведущая организация Казанский государственный

технологический университет

Защита состоится "23" декабря 2004 года в 14 часов на заседании диссертационного совета К 212.081.04 по химическим наукам при Казанском государственном университете по адресу 420008, г. Казань, ул. Кремлевская, 18, Химический институт им. А.М.Бутлерова, Бутлеровская аудитория.

С диссертацией можно ознакомиться в научной библиотеке им. Н.И.Лобачевского Казанского государственного университета.

Отзывы на автореферат просим направлять по адресу: 420008, г. Казань, ул. Кремлевская, 18, КГУ, Научная часть.

Автореферат разослан " "ноября 2004 года.

Ученый секретарь

Диссертационного совета

кандидат химических наук, доцент

Л.Г.Шайдарова

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ*)

Актуальность исследования. Химия каликсаренов - циклических продуктов конденсации фенолов и альдегидов - переживает в последние десятилетия период бурного развития. Основная причина возникновения интереса к этим соединениям - способность образовывать комплексы включения типа "гость – хозяин" с заряженными и нейтральными молекулами. Исходные каликсарены могут быть получены одностадийным синтезом. Наличие в них активных реакционных центров позволяет проводить различные модификации структуры. Каликс[4]арены обладают рядом привлекательных свойств, что, в сочетании с относительной доступностью, делает эти макроциклы незаменимыми при создании "биомиметических систем" - искусственных систем, моделирующих на молекулярном уровне или имитирующих реакции и процессы, протекающие в живых организмах. Кроме того, каликс[4]арены являются ключевыми "строительными блоками" для конструирования новых типов пространственно организованных структур, в частности, создания молекулярных трубок, селективных комплексообразователей, лекарственных препаратов.

Трубчатые структуры, способные встраиваться в бислойные фосфолипидные мембраны (3-5 нм толщиной) или самособирающиеся монослои, привлекательны как модели ионных каналов. Олигомеры, содержащие три или четыре каликсареновых фрагмента, имеют размер, необходимый ДЛЯ встраивания В бислойную мембрану. Вследствие конформационного многообразия каликсарены могут быть использованы как терминальные группы органических нанотрубок, а также как соединительные внутренние фрагменты. Трубчатые наноразмерные олигомеры каликсаренов, имитирующие свойства биомолекул, иммобилизованные на электродной поверхности, представляют собой важный шаг в создании новых ионно-молекулярных устройств, применяемых в качестве сенсоров на различные типы химических частиц. Эта техника прежде всего необходима для целей медицинской диагностики и анализа состояния окружающей среды.

Использование модульного подхода к синтезу трубчатых наноразмерных структур требует создания новых "строительных блоков", имеющих размеры порядка 2-5 нм и заданную пространственную архитектуру реакционных центров.

Целью работы является молекулярный дизайн и синтез бис- и трис-каликс[4]аренов, а также их прекурсоров, разработка подходов к регио- и стереоселективной функционализации тиакаликс[4]аренов.

^{*)} Научным консультантом работы является зав. кафедрой органической химии Казанского государственного университета, д.х.н., проф., чл.-корр. РАН Антипин Игорь Сергеевич.

Новизна и научная значимость работы. Впервые синтезирован и охарактеризован ряд 1,3-дизамещенных по нижнему ободу *п-трет*-бутилкаликс[4]аренов в конформации конус и тетразамещенных по нижнему ободу тиакаликсаренов в конформации 1,3альтернат; показана возможность применения полученных соединений в качестве предшественников терминальных и мостиковых фрагментов в синтезе трис-каликсаренов. получению тиакаликс[4]аренов, Разработаны подходы К которые ранее были труднодоступны: подобраны условия регио- и стереоселективного O-алкилирования нижнего обода n-mреm-бутилтиакаликс[4]арена N-(4-нитрофенил)- α -бромацетамидом. Синтезирован и охарактеризован ряд новых бис- и трис-каликс[4]аренов, перспективных органических нанотрубок.

Практическая значимость работы. Разработан подход к селективному синтезу моно-, 1,2-ди-, 1,3-ди- и тризамещенных по нижнему ободу тиакаликс[4]аренов, который позволит получать новые макроциклические соединения с различной степенью функционализации. Предложен и реализован подход к получению трубчатых наноразмерных структур на основе мета-циклофанов, а именно [2+2]-макроциклизация исходного *п-трет*-бутилкаликс[4]арена с соответствующим бифункциональным алкилирующим реагентом и [2+1]-макроциклизация трех каликс[4]ареновых фрагментов. Получены новые бис- и трис-каликсарены - перспективные органические "строительные блоки" для создания новых супрамолекулярных материалов.

Основные положения, выносимые на защиту:

- Впервые синтезированы реакцией *п-трет*-бутилтиакаликс[4]арена с *N*-(4-нитрофенил)-α-бромацетамидом и охарактеризованы рядом физических методов 5,11,17,23-тетра-*трет*-бутил-25,26,27-тригидрокси-28-[*N*-(4'-нитрофенил)аминокарбонилметокси]тиакаликс[4] арен, 5,11,17,23-тетра-*трет*-бутил-25,26-дигидрокси-27,28-бис[*N*-(4'-нитрофенил)аминокарбонилметокси]тиакаликс[4]арен, 5,11,17,23-тетра-*трет*-бутил-25,27-дигидрокси-26,28-бис[*N*-(4'-нитрофенил)аминокарбонилметокси]тиакаликс[4]арен, 5,11,17,23-тетра-*трет*-бутил-25-гидрокси-26,27,28-трис[*N*-(4'-нитрофенил)аминокарбонилметокси]тиакаликс[4] арен в конформациях *конус* и *частичный конус*.
- Установлена региоселективность реакции O-алкилирования n-mpem-бутилтиакаликс[4]арена N-(4-нитрофенил)- α -бромацетамидом, достигаемая за счет применения соответствующего основания (карбоната щелочного металла) и растворителя.
- Разработан подход к селективному синтезу моно-, 1,2-ди-, 1,3-ди- и тризамещенных по нижнему ободу тиакаликс[4]аренов.
- Синтезированы новые 1,3-дизамещенные по нижнему ободу *п-трет*-бутилкаликс[4]арены в конформации *конус* и тетразамещенные по нижнему ободу тиакаликсарены в

конформации 1,3-альтернат, предложенные в качестве предшественников терминальных и мостиковых фрагментов трис-каликсаренов.

- [2+2]-Макроциклизацией *п-трет*-бутилкаликс[4]арена с соответствующими бифункциональными алкилирующими реагентами получены бис-каликс[4]арены.
- Впервые синтезированы трис-каликсарены, содержащие в качестве соединительного мостикового фрагмента тиакаликсарен в конформации *1,3-альтернат*, а в качестве терминального фрагмента каликс[4]арен в конформации *конус*.

Апробация работы. Результаты исследований были представлены на I-III Международных симпозиумах "Молекулярный дизайн и синтез супрамолекулярных систем" (Казань, 2000, 2002, 2004), V и VII Молодежных научных школах-конференциях по органической химии (Екатеринбург, 2002, 2004 – диплом за лучший устный доклад), XXI Международной Чугаевской конференции по координационной химии (Киев, 2003), IV Всероссийской конференции молодых ученых "Современные проблемы теоретической и экспериментальной химии" (Саратов, 2003 – диплом II степени), на XVII Менделеевском съезде по общей и прикладной химии (Казань, 2003), на XI Всероссийской конференции "Структура и динамика молекулярных систем" (Яльчик, Республика Марий-Эл, 2004), на итоговой научной конференции Казанского государственного университета (Казань, 2003).

Публикации. Основной материал диссертации опубликован в 2 статьях и 19 тезисах докладов Российских и Международных конференций.

Объем и структура работы. Диссертационная работа изложена на 154 страницах машинописного текста, включает 60 рисунков, 5 таблиц. Состоит из введения, трех глав, выводов и списка использованных библиографических источников, включающего 147 ссылок на отечественные и зарубежные работы.

Работа выполнена на кафедре органической химии Химического института им. А.М.Бутлерова Казанского государственного университета, является частью исследований по основному научному направлению химического факультета "Строение и реакционная способность органических, элементоорганических и координационных соединений" и проведена в соответствии с госбюджетной темой Минобразования РФ "Теоретическое и экспериментальное исследование термодинамики меж-И внутримолекулярных взаимодействий и взаимосвязи с реакционной способностью органических соединений в термических реакциях" (рег. № 01.2.00 308752). Диссертация выполнена при финансовой поддержке гранта РФФИ № 03-03-33112 "Конформации, геометрические параметры и конформационная подвижность каликс[4]аренов и супрамолекулярных структур на их основе (димеров, комплексов "гость-хозяин") в различных органических растворителях и в лиотропных жидкокристаллических системах по данным ЯМР спектроскопии" (2003-2004), грантов Академии Республики Татарстан № 07-7.4-14 "Создание трехмерных пространственно-ориентированных олигомеров (нанотрубок) на тиакаликс[4]ареновой платформе" (2001-2002), № 07-7.4-04 "Нековалентная самосборка супрамолекулярных каналов на основе функционализированных каликс[4]аренов и тиакаликс[4]аренов" (2001-2002).

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснованы актуальность темы диссертационной работы, выбор объектов исследования и сформулированы цели работы.

В первой главе (литературном обзоре) представлен обзор современного состояния исследований по синтезу и свойствам бис- и олигокаликс[4]аренов.

Синтез бис-каликс[4]аренов [2+2]-макроциклизацией

В настоящее время магистральная стратегия получения бис- и олигокаликс[4]аренов основана на многостадийном синтезе, включающем предварительную функционализацию каликсаренов 1 и 2 и дальнейшую ковалентную сшивку каликс[4]ареновых фрагментов в единую молекулярную систему. Хотя на каждой стадии достигаются неплохие выходы целевых продуктов, общие выходы бис- и трис-каликс[4]аренов достаточно низки (<10%). В связи с этим актуальной является разработка новых эффективных подходов к синтезам данных соединений.

Нами был предложен одностадийный синтез бис-каликсаренов, соединенных двумя мостиками по нижнему ободу, исходя из немодифицированного *п-трет*-бутилкаликс[4]арена **1**, [2+2]-макроциклизацией с подходящими бифункциональными алкилирующими реагентами (рис.1).

Рис.1. [2+2]-Макроциклизация *п-трет*-бутилкаликс[4]арена с соответствующим бифункциональным алкилирующим реагентом, где $X = -CH_2OCH_2$ -, $4-C_6H_4$ -, $2-C_6H_4$ -.

Такой подход требует либо реализации матричного (темплатного) синтеза, либо жесткой и комплементарной ориентации центров взаимодействия. В связи с этим в качестве бифункциональных алкилирующих агентов нами было предложено использовать 1,5-дибром-3-оксапентан, 1,2- и 1,4-ди(бромметил)бензолы.

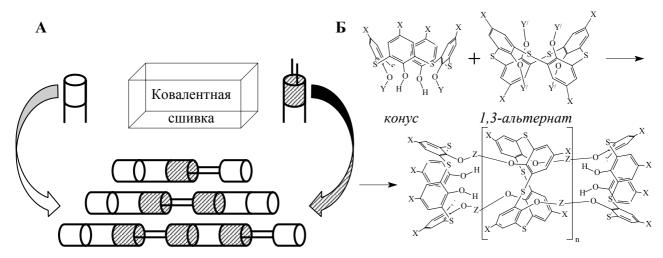
Результаты предварительно проведенного молекулярного моделирования полуэмпирическим методом РМЗ структуры возможных продуктов [2+2]-макроциклизации и [1+1]-конденсации показали потенциальную возможность образования продуктов [2+2]-макроциклизации для всех предложенных бифункциональных алкилирующих реагентов, а также возможность образования продуктов [1+1]-конденсации в случае бромистого оксилилена и 1,5-дибром-3-оксапентана.

Алкилированием *п-трет*-бутилкаликс[4]арена в ацетонитриле в присутствии поташа соответствующими бифункциональными алкилирующими реагентами нами были получены бис-каликсарены **3-5** с выходами 30, 33 и 45%, соответственно. Структура полученных соединений была изучена методами ¹Н и двумерной ЯМР спектроскопии. Образование бис-каликс[4]аренов **3-5** было подтверждено MALDI-TOF и электроспрей масс-спектроскопией.

Анализ экспериментальных данных показывает, что выходы продукта [2+2]-макроциклизации n-mpem-бутилкаликс[4]арена с бифункциональными алкилирующими реагентами повышаются с увеличением конформационной жесткости мостикового фрагмента в ряду: $-OCH_2CH_2OCH_2CH_2O- < 1,2-OCH_2C_6H_4CH_2O- < 1,4-OCH_2C_6H_4CH_2O-$ Следует отметить, что в случае, когда спейсер содержит группы, способные к координации катионов металлов ($-OCH_2CH_2OCH_2CH_2O-$), для увеличения выхода целевого продукта можно использовать темплатный эффект соответствующего катиона. Данный подход был применен при синтезе бис-каликсарена 3.

В случае реакции с 1,5-дибром-3-оксапентаном был выделен продукт [1+1]- конденсации $\bf 6$ с выходом 7 %, а в случае реакции с бромистым $\bf n$ -ксилиленом с выходом 23% нами был выделен трис-каликсарен 7, в котором в образовании единой макроциклической

полости участвуют три каликс[4]ареновых фрагмента.


С целью создания гидрофильных областей на концах нанотрубки, что необходимо для ее самопроизвольной ориентации в бислойной мембране, и последующей их модификации, гидрофобные *трем*-бутильные группы были замещены на полярные и легко трансформируемые нитро-группы. Синтез амфифильной структуры **8** был осуществлен селективным *ипсо* нитрованием макроцикла **3** 65%-ной азотной кислотой в хлористом метилене в присутствии уксусной кислоты при комнатной температуре. Соединение **8** было получено с выходом 62%.

Структура каликс[4]аренов **3-8** охарактеризована методами ¹H, 2D NOESY ЯМР спектроскопии и MALDI TOF масс-спектрометрии.

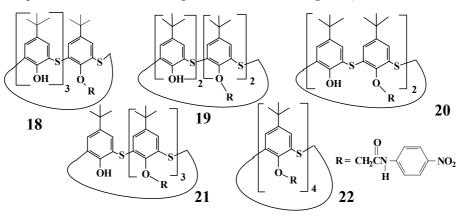
Синтез прекурсоров трубчатых наноразмерных трис-каликсаренов

Синтетически удобной макроциклической платформой (рис.2) для конструирования трубчатых наноразмерных структур являются каликс[4]арены в конформациях *конус* и 1,3- альтернат (1 нм), внутренний диаметр которых обуславливает способность катионов Na^+ и

К⁺ проходить через макроцикл. Нами предложено использовать ди- и тетразамещенные по нижнему ободу каликс[4]арены и тиакаликс[4]арены, соответственно, в конформациях конус и 1,3-альтернат, в качестве прекурсоров при получении трис- и олигокаликс[4]аренов. Сравнительная легкость получения тетразамещенных по нижнему ободу тиакаликс[4]аренов в конформации 1,3-альтернат, в отличие от "классического" каликс[4]арена, делает привлекательным использование производных тиакаликсарена в качестве "строительного" блока в синтезе органических нанотрубок (рис.2).

Рис.2. Блочный или модульный подход к синтезу органических нанотрубок (**A**) на основе тиакаликс[4]аренов (**Б**).

Соединения 9-10, 13-16 получены селективным алкилированием алкилгалогенидами нижнего обода каликсарена 1 и тиакаликсарена 2, соответственно. Нитрилы 9 и 10 были количественно восстановлены 1М раствором В₂Н₆ в тетрагидрофуране, а соединение 17 тетраэфира 16 раствором получено гидролизом водным гидроксида тетрагидрофуране. Структура каликс[4]аренов 9-17 охарактеризована методами ¹H ЯМР, 2D NOESY ЯМР спектроскопии и MALDI TOF масс-спектрометрии. Методом 2D ЯМР ¹H-¹H NOESY спектроскопии установлена пространственная структура полученных прекурсоров в Дизамещенные каликсарены 9-13 находятся В конформации растворе. тетразамещенные тиакаликсарены 14-17 - 1,3-альтернат.


Изучение взаимодействия *n-mpem*-бутилтиакаликс[4]арена с *N*-(4'нитрофенил)бромацетамидом.

С целью получения прекурсора для терминального фрагмента органической нанотрубки нами было изучено получение в одну стадию из *n-mpem*-бутилтиакаликс[4]арена макроцикла **20** в конформации *конус*.

В то время как для "классических" каликс[4]аренов (1) в литературе представлены различные методы регио- и стереоселективной модификации по нижнему и верхнему ободу, в случае тиакаликсаренов характерно получение тетразамещенных продуктов в конформации 1,3-альтернат (2). Замена в молекуле "классического" *п-трет*бутилкаликс[4]арена 1 метиленовых мостиков на атомы серы приводит к появлению новых особенностей в химическом поведении тиа-аналога. Отличительной особенностью алкилирования тиакаликс[4]арена по нижнему ободу галоидными алкилами является низкая регио- и стереоселективность: сложно остановить замещение на промежуточной стадии. Как правило, образуется смесь сложно разделимых частично замещенных продуктов.

По ряду причин мы остановили свой выбор на N-(4'-нитрофенил)бромацетамиде. Вопервых, предполагаемые продукты алкилирования (18-22) - удобные прекурсоры для дальнейшей функционализации тиакаликсарена: гидролиз по амидным фрагментам приведет к получению кислоты, а восстановление нитрогруппы — к ароматическим аминам. Вовторых, из литературы известно, что аккумулирование амидных протонов на нижнем ободе каликс[4]арена приводит к связыванию анионов.

С целью получения продуктов частичного замещения, алкилирующий реагент был взят в недостатке по отношению к фенольным группам макроцикла. При алкилировании нижнего обода тиакаликс[4]арена 2 возможно образование пяти продуктов с различной степенью функционализации: монозамещенного 18, 1,2-дизамещенного 19, 1,3-дизамещенного 20, тризамещенного 21, тетразамещенного 22 (рис.3).

Рис.3. Возможные продукты алкилирования N-(4-нитрофенил)- α -бромацетамидом нижнего обода n-mpem-m-mtиакаликс[4]арена.

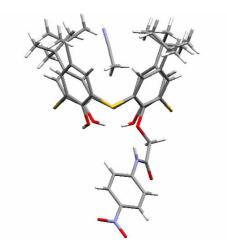
Было изучено влияние условий протекания синтеза (температура, время, растворитель, соотношение реагентов, природы основания) на регио- и стереоселективность реакции алкилирования нижнего обода *п-трет*-бутилтиакаликс[4]арена N-(4'-нитрофенил)бромацетамидом в ацетоне и ацетонитриле в присутствии карбонатов щелочных металлов (натрия, калия, цезия).

Таблица 1. Выходы продуктов алкилирования N-(4'-нитрофенил)бромацетамидом ТСА **2** при соотношении реагентов ТСА : BrCH₂C(O)NHC₆H₄NO₂ : M₂CO₃ =1:2:4

Растворитель	Основание	Выход продуктов, % ^{а)}				
		18	19	20	21	23
Ацетон	Na ₂ CO ₃	-	-	28	5	-
	K ₂ CO ₃	21	4	-	-	-
	Cs ₂ CO ₃	20	21	-	-	-
Ацетонитрил	Na ₂ CO ₃	-	-	37	-	-
	K ₂ CO ₃	40	-	2	-	2
	Cs ₂ CO ₃	-	-	-	-	-

а) Приведен выход выделенных в чистом виде соединений.

В ацетоне при использовании карбоната натрия преимущественно образуется 1,3дизамещенный тиакаликсарен **20** с выходом 28%, помимо этого минорным продуктом реакции с выходом 5% является тризамещенный тиакаликс[4]арен **21** в конформации *конус*.


В случае карбонатов калия и цезия были выделены моно— (18) и 1,2- дизамещенный (19) тиакаликсарены. В присутствии карбоната калия основным продуктом реакции является монозамещенный тиакаликсарен 18 (21%), а 1,2-дизамещенный тиакаликсарен 19 образуется в качестве примеси (4%). Напротив, в случае карбоната цезия выхода продуктов 18 и 19 оказались близкими по величине: 20% и 21%, соответственно.

Замена ацетона на ацетонитрил и повышение температуры приводит к изменению как природы, так и выходов образующихся продуктов. При использовании карбоната натрия образуется 1,3-дизамещенный продукт **20** с выходом 37%.

Выход монозамещенного тиакаликс[4]арена **18** в присутствии карбоната калия составил 40%, кроме этого удалось выделить из реакционной смеси 1,3-дизамещенный тиакаликс[4]арен **20** (2%) и тризамещенный тиакаликс[4]арен **23** в конформации *частичный конус* (2%).

Структура соединений **18** – **21**, **23** была охарактеризована с помощью одномерной и двумерной ЯМР, ИК-спектроскопии, масс-спектрометрии (масс-спектроскопии ЭУ и MALDI-TOF), а также данными элементного анализа. Структура соединения **18** была подтверждена с помощью рентгеноструктурного анализа (рис.4).

Интересно отметить, что после перекристаллизации циклофана **18** из ацетонитрила образуются кристаллы, содержащие молекулы растворителя. Продолжительная сушка полученных кристаллов в вакууме (3 дня) не привела к удалению ацетонитрила. Данные ПМР спектроскопии показали, что состав образующегося клатрата тиакаликсарен **18** — ацетонитрил 1:1. Это было окончательно установлено методом термогравиметрии. Рентгеноструктурный анализ также подтвердил образование клатрата (рис.4), причем оказалось, что молекула ацетонитрила направлена метильной группой в макроциклическую полость.

Рис.4. Структура клатрата тиакаликс[4]арена **18** с ацетонитрилом в кристаллическом состоянии.

С помощью 2D NOESY ЯМР спектроскопии было показано, что соединения **18**, **20**, **21** находятся в конформации *конус*, соединение **19** является 1,2-дизамещенным тиакаликсареном в конформации *1,2-альтернат*, тризамещенный тиакаликсарен **23** находится в конформации *частичный конус*.

Образование 1,2-дизамещенного тиакаликс[4]арена в конформации *1,2-альтернат*, ранее не описанной в химии каликс[4]аренов, по-видимому, обусловлено термодинамической стабилизацией структуры вследствие внутримолекулярной водородной связи между амидным фрагментом и фенольной группой. Отметим, что повороту незамещенного арильного фрагмента ОН-группой через макроциклическое кольцо препятствует внутримолекулярная водородная связь. В ИК-спектре соединения полосы поглощения ОН и NH групп проявляются в виде узких разделенных полос при 3336 см⁻¹ и 3385 см⁻¹, соответственно, что свидетельствует о наличии сильной внутримолекулярной водородной связи в структуре тиакаликс[4]арена 19.

Следует отметить, что при использовании карбоната цезия целевое алкилирование нижнего обода тиакаликсарена **2** провести не удалось, вследствие осмоления реакционной смеси.

Можно заключить, что при соотношении тиакаликс[4]арен:алкилирующий реагент:основание=1:2:4 наблюдается определенная региоселективность алкилирования, но при этом выходы продуктов оказываются невысокими - 20% - 40%. В связи с этим для повышения выходов целевых продуктов было увеличено количество основания и использовано соотношение тиакаликс[4]арен:алкилирующий реагент:основание=1:2:6. При этом наблюдается увеличение выходов продуктов с сохранением региоселективности реакции. Так, 1,3-дизамещенный тиакаликс[4]арен 20 при использовании карбоната натрия в ацетонитриле был выделен с выходом 60%, а 1,2-дизамещенный тиакаликс[4]арен 19 в случае карбоната цезия в ацетоне - с выходом 36%, монозамещенный тиакаликс[4]арен 18 при применении карбоната калия в ацетоне - с выходом 28%.

Повышение температуры реакционной смеси (ацетонитрил), а также увеличение количества и силы основания, повышает вероятность одновременного алкилирования по фенольной и амидной группе и, как следствие, приводит к уменьшению выходов целевых продуктов. В ацетоне при повышении силы основания выходы повышаются. В ацетонитриле при использовании самого сильного в данном ряду основания карбоната цезия целевые продукты не образуются.

Влияние природы растворителя заключается не только в изменении температуры протекания реакции. Оказалось, что образующийся 1,3-дизамещенный продукт 20 не

растворяется в ацетонитриле и вследствие выведения из реакционной среды дальнейшее алкилирование не происходит. Однако продукты моно-, 1,2-, 1,3-дизамещения *мета*циклофана **2** по нижнему ободу хорошо растворяются в ацетоне, поэтому реакция не останавливается на определенной стадии, и образуются все продукты частичного алкилирования тиакаликс[4]арена.

Следует отметить, что при использовании ацетона характерно образование 1,2-дизамещенного продукта **19** в конформации *1,2-альтернат*. При использовании ацетонитрила, напротив, был выделен продукт дистального замещения **20** в конформации *конус*, а образование 1,2-дизамещенного продукта **19** в конформации *1,2-альтернат* не зафиксировано.

Изучение [2+1]-макроциклизации трех каликс[4]ареновых фрагментов

Следующим этапом после получения прекурсоров трис-каликсаренов стало проведение реакции [2+1]-макроциклизации тетракислоты на основе тиакаликс[4]арена **17** в конформации *1,3-альтернат* с диамином на основе каликс[4]арена **11** в конформации *конус*.

Предварительно нами была изучена модельная реакция хлорангидрида тетракислоты **17** с диаминами **25** и **26**.

При подборе оптимальных условий синтеза нами варьировались природа растворителя и температура реакционной смеси. Максимальный выход продуктов **27** и **28** (60-70 %) был достигнут проведением реакции в хлористом метилене при комнатной температуре с использованием в качестве основания триэтиламина.

На модельных реакциях было показано, что при взаимодействии тетракислоты **17** с диаминами отсутствуют значительные стерические препятствия, обусловленные наличием *трет*-бутильных групп. Нами были оптимизированы условия [2+1]-макроциклизации диаминов с тетракислотой **17**. В аналогичных условиях нами была проведена реакция хлорангидрида тетракислоты **17** с диамином **11** на основе каликс[4]арена.

В ПМР спектре трис-каликсарена **24** мостиковые метиленовые протоны каликс[4]аренового цикла проявляются в виде АВ-спиновой системы, что свидетельствует о сохранении каликс[4]ареновыми фрагментами конформации *конус*. Образование трис-каликсарена подтверждено методом MALDI-TOFF масс-спектрометрии **2467** (M+H⁺). В ИК-спектре соединения **24** наблюдаются полосы валентных колебаний водородносвязанных ОН (3355) и NH (3410), полоса C=O (1687) и C(O)-NH (1525).

Основные выводы и результаты.

- 1. Впервые показана регио- и стереоселективность реакции O-алкилирования n-mpem-бутилтиакаликс[4]арена N-(4-нитрофенил)- α -бромацетамидом в присутствии карбонатов щелочных металлов. Подобраны условия селективного получения моно-, 1,2-ди-, 1,3-ди- и тризамещенных по нижнему ободу тиакаликс[4]аренов.
- **2.** Впервые реакцией *п-трет*-бутилтиакаликс[4]арена с N-(4-нитрофенил)- α -бромацетамидом получены 5,11,17,23-тетра-mpem-бутил-25,26,27-тригидрокси-28-[N-(4'-нитрофенил)аминокарбонилметокси]тиакаликс[4]арен, 5,11,17,23-тетра-mpem-бутил-25,26-дигидрокси-27,28-бис[N-(4'-нитрофенил)аминокарбонилметокси]тиакаликс[4]арен, 5,11,17,23-тетра-mpem-бутил-25,27-дигидрокси-26,28-бис[N-(4'-нитрофенил)аминокарбонил метокси]тиакаликс[4]арен, 5,11,17,23-тетра-mpem-бутил-25-гидрокси-26,27,28-трис[N-(4'-нитрофенил)аминокарбонилметокси]тиакаликс[4]арен в конформациях *конус* и *частичный конус*.
- **3.** Предложен и реализован подход к получению трубчатых наноразмерных структур на основе метациклофанов, а именно [2+1]-макроциклизация трех каликс[4]ареновых фрагментов в конформациях *конус* и *1,3-альтернат*, соответственно.
- **4.** Синтезированы новые 1,3-дизамещенные по нижнему ободу *п-трет*-бутилкаликс[4]арены в конформации *конус* и тетразамещенных по нижнему ободу тиакаликсарены в конформации *1,3-альтернат*, предложенные в качестве предшественников терминальных и мостиковых фрагментов трис-каликсаренов.
- **5.** [2+2]-Макроциклизацией *п-трет*-бутилкаликс[4]арена с соответствующими бифункциональными алкилирующими реагентами получены бис-каликс[4]арены.
- **6.** Впервые синтезированы трис-каликсарены, содержащие в качестве соединительного элемента тиакаликс[4]ареновый фрагмент в конформации *1,3-альтернат*, а в качестве терминальных каликс[4]ареновые фрагменты в конформации *конус*.

Основное содержание работы изложено в следующих публикациях:

- 1. Стойков И.И. Новые материалы на основе трубчатых наноразмерных структур. Сообщение 1. Синтез, изучение структуры и определение межпротонных расстояний в растворах функционализированных тиакаликс[4]аренов по данным спектроскопии ЯМР NOESY / И.И.Стойков, Д.Ш.Ибрагимова, И.С.Антипин, А.И.Коновалов, Т.А.Гадиев, Б.И.Хайрутдинов, Ф.Х.Каратаева, В.В.Клочков // Изв. АН. Сер. хим.- 2004. № 10. С.2172-2178.
- 2. Стойков И.И. Синтетические рецепторы на основе функционализированного по нижнему ободу каликс[4]арена в молекулярном распознавании дикарбоновых, а-

- гидрокси- и α-аминокислот / И.И.Стойков, Л.И.Гафиуллина, Д.Ш.Ибрагимова, И.С.Антипин, А.И.Коновалов // Изв. АН. Сер. хим.- 2004. № 6. С.1125-1133.
- 3. Ибрагимова Д.Ш. Синтез и изучение структуры новых производных каликс[4]арена и тиакаликс[4]арена щаг на пути к созданию нанотрубок и ионных каналов / Д.Ш.Ибрагимова, А.А.Хрусталев, И.И.Стойков // Тезисы докладов ІІ научной конференции молодых ученых, аспирантов и студентов научно-образовательного центра КГУ "Материаллы и технологии XXI века", Казань, 5-6 декабря 2001 г., с.38.
- 4. Ибрагимова Д.Ш. Модульный подход к созданию искусственных ионных каналов на основе каликс[4]аренов и тиакаликс[4]аренов / Д.Ш.Ибрагимова // Тезисы докладов итоговой конференции Республиканского конкурса научных работ среди студентов и аспирантов на соискание премии имени Н.И.Лобачевского, Казань, 1-2 марта 2002 г., с.143.
- 5. Ибрагимова Д.Ш. Новые подходы к созданию искусственных ионных каналов: синтез и изучение структуры новых производных каликс[4]арена и тиакаликс[4]арена / Д.Ш.Ибрагимова, А.А.Хрусталев, И.И.Стойков, И.С.Антипин, А.И.Коновалов // Тезисы докладов V молодежной научной школы-конференции по органической химии, Екатеринбург, 22-26 апреля 2002 г., с.192.
- 6. Ibragimova D.Sh. Synthesis 1,2- and 1,3-disubstituted on the lower rim thiacalix[4]arenes / S.R.Kleshnina, D.Sh.Ibragimova, A.A.Khrustalev, I.I.Stoikov, I.S.Antipin, A.I.Konovalov // Abstracts of II International Symposium "Molecular Design and Synthesis of Supramolecular Architectures", Kazan, Russia, August 27-31 2002, p.112.
- 7. Ибрагимова Д.Ш. К новым материалам на основе трубчатых наноструктур: синтез синтонов на основе каликс[4]аренов и тиакаликс[4]аренов / Д.Ш.Ибрагимова, И.И.Стойков, И.С.Антипин, А.И.Коновалов // Тезисы докладов III научной конференции молодых ученых, аспирантов и студентов научно-образовательного центра Казанского государственного университета "Материалы и технологии XXI века", Казань, 14-15 февраля 2003 г., с.41.
- 8. Ибрагимова Д.Ш. Новые молекулярные хозяева: синтез и свойства бискаликсаренов / Д.Ш.Ибрагимова, И.И.Стойков, И.С.Антипин, А.И.Коновалов // Тезисы докладов XXI международной Чугаевской конференции по координационной химии, Киев, 10-13 июня 2003 г., с.264-265.
- 9. Ибрагимова Д.Ш. Селективная функционализация тиакаликс[4]арена: синтез новых потенциальных экстрагентов катионов металлов / Д.Ш.Ибрагимова, И.И.Стойков, И.С.Антипин, А.И.Коновалов // Тезисы докладов IV Всероссийской конференции молодых ученных "Современные проблемы теоретической и экспериментальной химии",

- Саратов, 23-25 июня 2003 г., с.71.
- 10. Ибрагимова Д.Ш. Молекулярный конструктор: синтез строительных блоков на основе каликс[4]аренов для получения нанотрубок / Д.Ш.Ибрагимова, И.И.Стойков, И.С.Антипин, А.И.Коновалов // Тезисы докладов XVII Менделеевского съезда по общей и прикладной химии, Казань, 21-26 сентября 2003 г., с.57.
- 11. Ибрагимова Д.Ш. Наноразмерные структуры на основе каликсарена: синтез бис- и трискаликсаренов / Д.Ш.Ибрагимова, В.А.Смоленцев, И.И.Стойков, И.С.Антипин, А.И.Коновалов // Тезисы докладов IV научной конференции молодых ученых, аспирантов и студентов научно-образовательного центра Казанского государственного университета "Материалы и технологии XXI века", Казань, 16-17 марта 2004 г., с.36.
- 12. Шестакова Н.В. Региофункционализация тиакаликс[4]арена N-(4-нитрофенил)-α-бромацетамидом / Н.В.Шестакова, Д.Ш.Ибрагимова, И.И.Стойков, И.С.Антипин, А.И.Коновалов // Тезисы докладов IV научной конференции молодых ученых, аспирантов и студентов научно-образовательного центра Казанского государственного университета "Материалы и технологии XXI века", Казань, 16-17 марта 2004 г., с.87.
- 13. Ахметзянова Л.Р. Синтез бискаликс[4]аренов, соединенных "хвост к хвосту" / Л.Р.Ахметзянова, Д.Ш.Ибрагимова, В.А.Смоленцев, И.И.Стойков // Тезисы докладов IV научной конференции молодых ученых, аспирантов и студентов научнообразовательного центра Казанского государственного университета "Материалы и технологии XXI века", Казань, 16-17 марта 2004 г., с.11.
- 14. Зайков Е.Н., Синтез и изучение структуры бис-азакраун-тиакаликс[4]арена / Е.Н.Зайков, Д.Ш.Ибрагимова, Л.И.Гафиуллина, И.И.Стойков, И.С.Антипин, А.И.Коновалов // Тезисы докладов IV научной конференции молодых ученых, аспирантов и студентов научно-образовательного центра Казанского государственного университета "Материалы и технологии XXI века", Казань, 16-17 марта 2004 г., с.31.
- 15. Ахметзянова Л.Р. Синтез бискаликс[4]аренов, соединенных двумя мостиковыми фрагментами по нижнему ободу / Л.Р.Ахметзянова, В.А.Смоленцев, Д.Ш.Ибрагимова, И.И.Стойков // Тезисы докладов XIV Российской студенческой научной конференции "Проблемы теоретической и экспериментальной химии", Екатеринбург, 20-23 апреля 2004 г., с.252.
- 16. Зайков Е.Н. Синтез бисазакраунтиакаликс[4]арена в конформации 1,3-альтернат / Е.Н.Зайков, Д.Ш.Ибрагимова, Л.И.Гафиуллина, И.И.Стойков // Тезисы докладов XIV Российской студенческой научной конференции "Проблемы теоретической и экспериментальной химии", Екатеринбург, 20-23 апреля 2004 г., с.309.
- 17. Шестакова Н.В. Селективная функционализация 5,11,17,23-тетра-трет-бутил-

- 25,26,27,28-тетрагидрокси-2,8,14,20-тетратиакаликс[4]арена N-(4'-нитрофенил)-1- бромацетамидом / Н.В.Шестакова, Д.Ш.Ибрагимова, И.И.Стойков // Тезисы докладов XIV Российской студенческой научной конференции "Проблемы теоретической и экспериментальной химии", Екатеринбург, 20-23 апреля 2004 г., с.251.
- 18. Ибрагимова Д.Ш. Синтез новых бис и трискаликс[4]аренов / Д.Ш.Ибрагимова, И.И.Стойков, И.С.Антипин, А.И.Коновалов // Тезисы докладов VII молодежной научная школа-конференция по органической химии, Екатеринбург, 6-10 июня 2004 г., с.31.
- 19. Ибрагимова Д.Ш. Синтез новых криптандов бис- и трискаликс[4]аренов / Д.Ш.Ибрагимова, И.И.Стойков, Е.Е.Стойкова, Г.А.Евтюгин, И.С.Антипин, А.И.Коновалов // Тезисы докладов XI Всероссийской конференции "Структура и динамика молекулярных систем", Яльчик, Республики Марий-Эл, 28 июня 2 июля 2004 г., с.114.
- 20. Ибрагимова Д.Ш. Региоселективный синтез новых ингибиторов холинэстеразы на основе тиакаликс[4]арена, содержащего N-(4-нитрофенил)-ацетамидный фрагмент / Д.Ш.Ибрагимова, И.И.Стойков, Е.Е.Стойкова, Г.А.Евтюгин, И.С.Антипин, А.И.Коновалов // Тезисы докладов XI Всероссийской конференции "Структура и динамика молекулярных систем", Яльчик, Республики Марий-Эл, 28 июня 2 июля 2004 г., с.115.
- 21. Ibragimova D.Sh. Synthesis of bis- and triscalixarenes: nanoscale structures on the base of calix[4]arenes / D.Sh.Ibragimova, I.I.Stoikov, I.S.Antipin, A.I.Konovalov // Abstracts of III International Symposium "Molecular Design and Synthesis of Supramolecular Architectures", Kazan, Russia, September 20-24 2004, p.95.